123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940 |
- /* Functions to support general ended bitmaps.
- Copyright (C) 1997-2019 Free Software Foundation, Inc.
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #ifndef GCC_BITMAP_H
- #define GCC_BITMAP_H
- /* Implementation of sparse integer sets as a linked list or tree.
- This sparse set representation is suitable for sparse sets with an
- unknown (a priori) universe.
- Sets are represented as double-linked lists of container nodes of
- type "struct bitmap_element" or as a binary trees of the same
- container nodes. Each container node consists of an index for the
- first member that could be held in the container, a small array of
- integers that represent the members in the container, and pointers
- to the next and previous element in the linked list, or left and
- right children in the tree. In linked-list form, the container
- nodes in the list are sorted in ascending order, i.e. the head of
- the list holds the element with the smallest member of the set.
- In tree form, nodes to the left have a smaller container index.
- For a given member I in the set:
- - the element for I will have index is I / (bits per element)
- - the position for I within element is I % (bits per element)
- This representation is very space-efficient for large sparse sets, and
- the size of the set can be changed dynamically without much overhead.
- An important parameter is the number of bits per element. In this
- implementation, there are 128 bits per element. This results in a
- high storage overhead *per element*, but a small overall overhead if
- the set is very sparse.
- The storage requirements for linked-list sparse sets are O(E), with E->N
- in the worst case (a sparse set with large distances between the values
- of the set members).
- This representation also works well for data flow problems where the size
- of the set may grow dynamically, but care must be taken that the member_p,
- add_member, and remove_member operations occur with a suitable access
- pattern.
- The linked-list set representation works well for problems involving very
- sparse sets. The canonical example in GCC is, of course, the "set of
- sets" for some CFG-based data flow problems (liveness analysis, dominance
- frontiers, etc.).
-
- For random-access sparse sets of unknown universe, the binary tree
- representation is likely to be a more suitable choice. Theoretical
- access times for the binary tree representation are better than those
- for the linked-list, but in practice this is only true for truely
- random access.
- Often the most suitable representation during construction of the set
- is not the best choice for the usage of the set. For such cases, the
- "view" of the set can be changed from one representation to the other.
- This is an O(E) operation:
- * from list to tree view : bitmap_tree_view
- * from tree to list view : bitmap_list_view
- Traversing linked lists or trees can be cache-unfriendly. Performance
- can be improved by keeping container nodes in the set grouped together
- in memory, using a dedicated obstack for a set (or group of related
- sets). Elements allocated on obstacks are released to a free-list and
- taken off the free list. If multiple sets are allocated on the same
- obstack, elements freed from one set may be re-used for one of the other
- sets. This usually helps avoid cache misses.
- A single free-list is used for all sets allocated in GGC space. This is
- bad for persistent sets, so persistent sets should be allocated on an
- obstack whenever possible.
- For random-access sets with a known, relatively small universe size, the
- SparseSet or simple bitmap representations may be more efficient than a
- linked-list set.
- LINKED LIST FORM
- ================
- In linked-list form, in-order iterations of the set can be executed
- efficiently. The downside is that many random-access operations are
- relatively slow, because the linked list has to be traversed to test
- membership (i.e. member_p/ add_member/remove_member).
-
- To improve the performance of this set representation, the last
- accessed element and its index are cached. For membership tests on
- members close to recently accessed members, the cached last element
- improves membership test to a constant-time operation.
- The following operations can always be performed in O(1) time in
- list view:
- * clear : bitmap_clear
- * smallest_member : bitmap_first_set_bit
- * choose_one : (not implemented, but could be
- in constant time)
- The following operations can be performed in O(E) time worst-case in
- list view (with E the number of elements in the linked list), but in
- O(1) time with a suitable access patterns:
- * member_p : bitmap_bit_p
- * add_member : bitmap_set_bit / bitmap_set_range
- * remove_member : bitmap_clear_bit / bitmap_clear_range
- The following operations can be performed in O(E) time in list view:
- * cardinality : bitmap_count_bits
- * largest_member : bitmap_last_set_bit (but this could
- in constant time with a pointer to
- the last element in the chain)
- * set_size : bitmap_last_set_bit
- In tree view the following operations can all be performed in O(log E)
- amortized time with O(E) worst-case behavior.
- * smallest_member
- * largest_member
- * set_size
- * member_p
- * add_member
- * remove_member
- Additionally, the linked-list sparse set representation supports
- enumeration of the members in O(E) time:
- * forall : EXECUTE_IF_SET_IN_BITMAP
- * set_copy : bitmap_copy
- * set_intersection : bitmap_intersect_p /
- bitmap_and / bitmap_and_into /
- EXECUTE_IF_AND_IN_BITMAP
- * set_union : bitmap_ior / bitmap_ior_into
- * set_difference : bitmap_intersect_compl_p /
- bitmap_and_comp / bitmap_and_comp_into /
- EXECUTE_IF_AND_COMPL_IN_BITMAP
- * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
- * set_compare : bitmap_equal_p
- Some operations on 3 sets that occur frequently in data flow problems
- are also implemented:
- * A | (B & C) : bitmap_ior_and_into
- * A | (B & ~C) : bitmap_ior_and_compl /
- bitmap_ior_and_compl_into
- BINARY TREE FORM
- ================
- An alternate "view" of a bitmap is its binary tree representation.
- For this representation, splay trees are used because they can be
- implemented using the same data structures as the linked list, with
- no overhead for meta-data (like color, or rank) on the tree nodes.
- In binary tree form, random-access to the set is much more efficient
- than for the linked-list representation. Downsides are the high cost
- of clearing the set, and the relatively large number of operations
- necessary to balance the tree. Also, iterating the set members is
- not supported.
-
- As for the linked-list representation, the last accessed element and
- its index are cached, so that membership tests on the latest accessed
- members is a constant-time operation. Other lookups take O(logE)
- time amortized (but O(E) time worst-case).
- The following operations can always be performed in O(1) time:
- * choose_one : (not implemented, but could be
- implemented in constant time)
- The following operations can be performed in O(logE) time amortized
- but O(E) time worst-case, but in O(1) time if the same element is
- accessed.
- * member_p : bitmap_bit_p
- * add_member : bitmap_set_bit
- * remove_member : bitmap_clear_bit
- The following operations can be performed in O(logE) time amortized
- but O(E) time worst-case:
- * smallest_member : bitmap_first_set_bit
- * largest_member : bitmap_last_set_bit
- * set_size : bitmap_last_set_bit
- The following operations can be performed in O(E) time:
- * clear : bitmap_clear
- The binary tree sparse set representation does *not* support any form
- of enumeration, and does also *not* support logical operations on sets.
- The binary tree representation is only supposed to be used for sets
- on which many random-access membership tests will happen. */
- #include "obstack.h"
- /* Bitmap memory usage. */
- struct bitmap_usage: public mem_usage
- {
- /* Default contructor. */
- bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
- /* Constructor. */
- bitmap_usage (size_t allocated, size_t times, size_t peak,
- uint64_t nsearches, uint64_t search_iter)
- : mem_usage (allocated, times, peak),
- m_nsearches (nsearches), m_search_iter (search_iter) {}
- /* Sum the usage with SECOND usage. */
- bitmap_usage
- operator+ (const bitmap_usage &second)
- {
- return bitmap_usage (m_allocated + second.m_allocated,
- m_times + second.m_times,
- m_peak + second.m_peak,
- m_nsearches + second.m_nsearches,
- m_search_iter + second.m_search_iter);
- }
- /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
- inline void
- dump (mem_location *loc, mem_usage &total) const
- {
- char *location_string = loc->to_string ();
- fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%"
- PRsa (9) PRsa (9) ":%5.1f%%"
- PRsa (11) PRsa (11) "%10s\n",
- location_string, SIZE_AMOUNT (m_allocated),
- get_percent (m_allocated, total.m_allocated),
- SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times),
- get_percent (m_times, total.m_times),
- SIZE_AMOUNT (m_nsearches), SIZE_AMOUNT (m_search_iter),
- loc->m_ggc ? "ggc" : "heap");
- free (location_string);
- }
- /* Dump header with NAME. */
- static inline void
- dump_header (const char *name)
- {
- fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
- "Times", "N searches", "Search iter", "Type");
- }
- /* Number search operations. */
- uint64_t m_nsearches;
- /* Number of search iterations. */
- uint64_t m_search_iter;
- };
- /* Bitmap memory description. */
- extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
- /* Fundamental storage type for bitmap. */
- typedef unsigned long BITMAP_WORD;
- /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
- it is used in preprocessor directives -- hence the 1u. */
- #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
- /* Number of words to use for each element in the linked list. */
- #ifndef BITMAP_ELEMENT_WORDS
- #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
- #endif
- /* Number of bits in each actual element of a bitmap. */
- #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
- /* Obstack for allocating bitmaps and elements from. */
- struct bitmap_obstack {
- struct bitmap_element *elements;
- struct bitmap_head *heads;
- struct obstack obstack;
- };
- /* Bitmap set element. We use a linked list to hold only the bits that
- are set. This allows for use to grow the bitset dynamically without
- having to realloc and copy a giant bit array.
- The free list is implemented as a list of lists. There is one
- outer list connected together by prev fields. Each element of that
- outer is an inner list (that may consist only of the outer list
- element) that are connected by the next fields. The prev pointer
- is undefined for interior elements. This allows
- bitmap_elt_clear_from to be implemented in unit time rather than
- linear in the number of elements to be freed. */
- struct GTY((chain_next ("%h.next"))) bitmap_element {
- /* In list form, the next element in the linked list;
- in tree form, the left child node in the tree. */
- struct bitmap_element *next;
- /* In list form, the previous element in the linked list;
- in tree form, the right child node in the tree. */
- struct bitmap_element *prev;
- /* regno/BITMAP_ELEMENT_ALL_BITS. */
- unsigned int indx;
- /* Bits that are set, counting from INDX, inclusive */
- BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
- };
- /* Head of bitmap linked list. The 'current' member points to something
- already pointed to by the chain started by first, so GTY((skip)) it. */
- struct GTY(()) bitmap_head {
- static bitmap_obstack crashme;
- /* Poison obstack to not make it not a valid initialized GC bitmap. */
- CONSTEXPR bitmap_head()
- : indx(0), tree_form(false), first(NULL), current(NULL),
- obstack (&crashme)
- {}
- /* Index of last element looked at. */
- unsigned int indx;
- /* False if the bitmap is in list form; true if the bitmap is in tree form.
- Bitmap iterators only work on bitmaps in list form. */
- bool tree_form;
- /* In list form, the first element in the linked list;
- in tree form, the root of the tree. */
- bitmap_element *first;
- /* Last element looked at. */
- bitmap_element * GTY((skip(""))) current;
- /* Obstack to allocate elements from. If NULL, then use GGC allocation. */
- bitmap_obstack * GTY((skip(""))) obstack;
- void dump ();
- };
- /* Global data */
- extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
- extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
- /* Change the view of the bitmap to list, or tree. */
- void bitmap_list_view (bitmap);
- void bitmap_tree_view (bitmap);
- /* Clear a bitmap by freeing up the linked list. */
- extern void bitmap_clear (bitmap);
- /* Copy a bitmap to another bitmap. */
- extern void bitmap_copy (bitmap, const_bitmap);
- /* Move a bitmap to another bitmap. */
- extern void bitmap_move (bitmap, bitmap);
- /* True if two bitmaps are identical. */
- extern bool bitmap_equal_p (const_bitmap, const_bitmap);
- /* True if the bitmaps intersect (their AND is non-empty). */
- extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
- /* True if the complement of the second intersects the first (their
- AND_COMPL is non-empty). */
- extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
- /* True if MAP is an empty bitmap. */
- inline bool bitmap_empty_p (const_bitmap map)
- {
- return !map->first;
- }
- /* True if the bitmap has only a single bit set. */
- extern bool bitmap_single_bit_set_p (const_bitmap);
- /* Count the number of bits set in the bitmap. */
- extern unsigned long bitmap_count_bits (const_bitmap);
- /* Count the number of unique bits set across the two bitmaps. */
- extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);
- /* Boolean operations on bitmaps. The _into variants are two operand
- versions that modify the first source operand. The other variants
- are three operand versions that to not destroy the source bitmaps.
- The operations supported are &, & ~, |, ^. */
- extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
- extern bool bitmap_and_into (bitmap, const_bitmap);
- extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
- extern bool bitmap_and_compl_into (bitmap, const_bitmap);
- #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
- extern void bitmap_compl_and_into (bitmap, const_bitmap);
- extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
- extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
- extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
- extern bool bitmap_ior_into (bitmap, const_bitmap);
- extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
- extern void bitmap_xor_into (bitmap, const_bitmap);
- /* DST = A | (B & C). Return true if DST changes. */
- extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
- /* DST = A | (B & ~C). Return true if DST changes. */
- extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
- const_bitmap B, const_bitmap C);
- /* A |= (B & ~C). Return true if A changes. */
- extern bool bitmap_ior_and_compl_into (bitmap A,
- const_bitmap B, const_bitmap C);
- /* Clear a single bit in a bitmap. Return true if the bit changed. */
- extern bool bitmap_clear_bit (bitmap, int);
- /* Set a single bit in a bitmap. Return true if the bit changed. */
- extern bool bitmap_set_bit (bitmap, int);
- /* Return true if a bit is set in a bitmap. */
- extern int bitmap_bit_p (bitmap, int);
- /* Debug functions to print a bitmap. */
- extern void debug_bitmap (const_bitmap);
- extern void debug_bitmap_file (FILE *, const_bitmap);
- /* Print a bitmap. */
- extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
- /* Initialize and release a bitmap obstack. */
- extern void bitmap_obstack_initialize (bitmap_obstack *);
- extern void bitmap_obstack_release (bitmap_obstack *);
- extern void bitmap_register (bitmap MEM_STAT_DECL);
- extern void dump_bitmap_statistics (void);
- /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
- to allocate from, NULL for GC'd bitmap. */
- static inline void
- bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO)
- {
- head->first = head->current = NULL;
- head->indx = head->tree_form = 0;
- head->obstack = obstack;
- if (GATHER_STATISTICS)
- bitmap_register (head PASS_MEM_STAT);
- }
- /* Release a bitmap (but not its head). This is suitable for pairing with
- bitmap_initialize. */
- static inline void
- bitmap_release (bitmap head)
- {
- bitmap_clear (head);
- /* Poison the obstack pointer so the obstack can be safely released.
- Do not zero it as the bitmap then becomes initialized GC. */
- head->obstack = &bitmap_head::crashme;
- }
- /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
- extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO);
- #define BITMAP_ALLOC bitmap_alloc
- extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO);
- #define BITMAP_GGC_ALLOC bitmap_gc_alloc
- extern void bitmap_obstack_free (bitmap);
- /* A few compatibility/functions macros for compatibility with sbitmaps */
- inline void dump_bitmap (FILE *file, const_bitmap map)
- {
- bitmap_print (file, map, "", "\n");
- }
- extern void debug (const bitmap_head &ref);
- extern void debug (const bitmap_head *ptr);
- extern unsigned bitmap_first_set_bit (const_bitmap);
- extern unsigned bitmap_last_set_bit (const_bitmap);
- /* Compute bitmap hash (for purposes of hashing etc.) */
- extern hashval_t bitmap_hash (const_bitmap);
- /* Do any cleanup needed on a bitmap when it is no longer used. */
- #define BITMAP_FREE(BITMAP) \
- ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
- /* Iterator for bitmaps. */
- struct bitmap_iterator
- {
- /* Pointer to the current bitmap element. */
- bitmap_element *elt1;
- /* Pointer to 2nd bitmap element when two are involved. */
- bitmap_element *elt2;
- /* Word within the current element. */
- unsigned word_no;
- /* Contents of the actually processed word. When finding next bit
- it is shifted right, so that the actual bit is always the least
- significant bit of ACTUAL. */
- BITMAP_WORD bits;
- };
- /* Initialize a single bitmap iterator. START_BIT is the first bit to
- iterate from. */
- static inline void
- bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
- unsigned start_bit, unsigned *bit_no)
- {
- bi->elt1 = map->first;
- bi->elt2 = NULL;
- gcc_checking_assert (!map->tree_form);
- /* Advance elt1 until it is not before the block containing start_bit. */
- while (1)
- {
- if (!bi->elt1)
- {
- bi->elt1 = &bitmap_zero_bits;
- break;
- }
- if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
- break;
- bi->elt1 = bi->elt1->next;
- }
- /* We might have gone past the start bit, so reinitialize it. */
- if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
- start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
- /* Initialize for what is now start_bit. */
- bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
- bi->bits = bi->elt1->bits[bi->word_no];
- bi->bits >>= start_bit % BITMAP_WORD_BITS;
- /* If this word is zero, we must make sure we're not pointing at the
- first bit, otherwise our incrementing to the next word boundary
- will fail. It won't matter if this increment moves us into the
- next word. */
- start_bit += !bi->bits;
- *bit_no = start_bit;
- }
- /* Initialize an iterator to iterate over the intersection of two
- bitmaps. START_BIT is the bit to commence from. */
- static inline void
- bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
- unsigned start_bit, unsigned *bit_no)
- {
- bi->elt1 = map1->first;
- bi->elt2 = map2->first;
- gcc_checking_assert (!map1->tree_form && !map2->tree_form);
- /* Advance elt1 until it is not before the block containing
- start_bit. */
- while (1)
- {
- if (!bi->elt1)
- {
- bi->elt2 = NULL;
- break;
- }
- if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
- break;
- bi->elt1 = bi->elt1->next;
- }
- /* Advance elt2 until it is not before elt1. */
- while (1)
- {
- if (!bi->elt2)
- {
- bi->elt1 = bi->elt2 = &bitmap_zero_bits;
- break;
- }
- if (bi->elt2->indx >= bi->elt1->indx)
- break;
- bi->elt2 = bi->elt2->next;
- }
- /* If we're at the same index, then we have some intersecting bits. */
- if (bi->elt1->indx == bi->elt2->indx)
- {
- /* We might have advanced beyond the start_bit, so reinitialize
- for that. */
- if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
- start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
- bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
- bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
- bi->bits >>= start_bit % BITMAP_WORD_BITS;
- }
- else
- {
- /* Otherwise we must immediately advance elt1, so initialize for
- that. */
- bi->word_no = BITMAP_ELEMENT_WORDS - 1;
- bi->bits = 0;
- }
- /* If this word is zero, we must make sure we're not pointing at the
- first bit, otherwise our incrementing to the next word boundary
- will fail. It won't matter if this increment moves us into the
- next word. */
- start_bit += !bi->bits;
- *bit_no = start_bit;
- }
- /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2. */
- static inline void
- bmp_iter_and_compl_init (bitmap_iterator *bi,
- const_bitmap map1, const_bitmap map2,
- unsigned start_bit, unsigned *bit_no)
- {
- bi->elt1 = map1->first;
- bi->elt2 = map2->first;
- gcc_checking_assert (!map1->tree_form && !map2->tree_form);
- /* Advance elt1 until it is not before the block containing start_bit. */
- while (1)
- {
- if (!bi->elt1)
- {
- bi->elt1 = &bitmap_zero_bits;
- break;
- }
- if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
- break;
- bi->elt1 = bi->elt1->next;
- }
- /* Advance elt2 until it is not before elt1. */
- while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
- bi->elt2 = bi->elt2->next;
- /* We might have advanced beyond the start_bit, so reinitialize for
- that. */
- if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
- start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
- bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
- bi->bits = bi->elt1->bits[bi->word_no];
- if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
- bi->bits &= ~bi->elt2->bits[bi->word_no];
- bi->bits >>= start_bit % BITMAP_WORD_BITS;
- /* If this word is zero, we must make sure we're not pointing at the
- first bit, otherwise our incrementing to the next word boundary
- will fail. It won't matter if this increment moves us into the
- next word. */
- start_bit += !bi->bits;
- *bit_no = start_bit;
- }
- /* Advance to the next bit in BI. We don't advance to the next
- nonzero bit yet. */
- static inline void
- bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
- {
- bi->bits >>= 1;
- *bit_no += 1;
- }
- /* Advance to first set bit in BI. */
- static inline void
- bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
- {
- #if (GCC_VERSION >= 3004)
- {
- unsigned int n = __builtin_ctzl (bi->bits);
- gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
- bi->bits >>= n;
- *bit_no += n;
- }
- #else
- while (!(bi->bits & 1))
- {
- bi->bits >>= 1;
- *bit_no += 1;
- }
- #endif
- }
- /* Advance to the next nonzero bit of a single bitmap, we will have
- already advanced past the just iterated bit. Return true if there
- is a bit to iterate. */
- static inline bool
- bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
- {
- /* If our current word is nonzero, it contains the bit we want. */
- if (bi->bits)
- {
- next_bit:
- bmp_iter_next_bit (bi, bit_no);
- return true;
- }
- /* Round up to the word boundary. We might have just iterated past
- the end of the last word, hence the -1. It is not possible for
- bit_no to point at the beginning of the now last word. */
- *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
- / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
- bi->word_no++;
- while (1)
- {
- /* Find the next nonzero word in this elt. */
- while (bi->word_no != BITMAP_ELEMENT_WORDS)
- {
- bi->bits = bi->elt1->bits[bi->word_no];
- if (bi->bits)
- goto next_bit;
- *bit_no += BITMAP_WORD_BITS;
- bi->word_no++;
- }
- /* Make sure we didn't remove the element while iterating. */
- gcc_checking_assert (bi->elt1->indx != -1U);
- /* Advance to the next element. */
- bi->elt1 = bi->elt1->next;
- if (!bi->elt1)
- return false;
- *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
- bi->word_no = 0;
- }
- }
- /* Advance to the next nonzero bit of an intersecting pair of
- bitmaps. We will have already advanced past the just iterated bit.
- Return true if there is a bit to iterate. */
- static inline bool
- bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
- {
- /* If our current word is nonzero, it contains the bit we want. */
- if (bi->bits)
- {
- next_bit:
- bmp_iter_next_bit (bi, bit_no);
- return true;
- }
- /* Round up to the word boundary. We might have just iterated past
- the end of the last word, hence the -1. It is not possible for
- bit_no to point at the beginning of the now last word. */
- *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
- / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
- bi->word_no++;
- while (1)
- {
- /* Find the next nonzero word in this elt. */
- while (bi->word_no != BITMAP_ELEMENT_WORDS)
- {
- bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
- if (bi->bits)
- goto next_bit;
- *bit_no += BITMAP_WORD_BITS;
- bi->word_no++;
- }
- /* Advance to the next identical element. */
- do
- {
- /* Make sure we didn't remove the element while iterating. */
- gcc_checking_assert (bi->elt1->indx != -1U);
- /* Advance elt1 while it is less than elt2. We always want
- to advance one elt. */
- do
- {
- bi->elt1 = bi->elt1->next;
- if (!bi->elt1)
- return false;
- }
- while (bi->elt1->indx < bi->elt2->indx);
- /* Make sure we didn't remove the element while iterating. */
- gcc_checking_assert (bi->elt2->indx != -1U);
- /* Advance elt2 to be no less than elt1. This might not
- advance. */
- while (bi->elt2->indx < bi->elt1->indx)
- {
- bi->elt2 = bi->elt2->next;
- if (!bi->elt2)
- return false;
- }
- }
- while (bi->elt1->indx != bi->elt2->indx);
- *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
- bi->word_no = 0;
- }
- }
- /* Advance to the next nonzero bit in the intersection of
- complemented bitmaps. We will have already advanced past the just
- iterated bit. */
- static inline bool
- bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
- {
- /* If our current word is nonzero, it contains the bit we want. */
- if (bi->bits)
- {
- next_bit:
- bmp_iter_next_bit (bi, bit_no);
- return true;
- }
- /* Round up to the word boundary. We might have just iterated past
- the end of the last word, hence the -1. It is not possible for
- bit_no to point at the beginning of the now last word. */
- *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
- / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
- bi->word_no++;
- while (1)
- {
- /* Find the next nonzero word in this elt. */
- while (bi->word_no != BITMAP_ELEMENT_WORDS)
- {
- bi->bits = bi->elt1->bits[bi->word_no];
- if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
- bi->bits &= ~bi->elt2->bits[bi->word_no];
- if (bi->bits)
- goto next_bit;
- *bit_no += BITMAP_WORD_BITS;
- bi->word_no++;
- }
- /* Make sure we didn't remove the element while iterating. */
- gcc_checking_assert (bi->elt1->indx != -1U);
- /* Advance to the next element of elt1. */
- bi->elt1 = bi->elt1->next;
- if (!bi->elt1)
- return false;
- /* Make sure we didn't remove the element while iterating. */
- gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U);
- /* Advance elt2 until it is no less than elt1. */
- while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
- bi->elt2 = bi->elt2->next;
- *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
- bi->word_no = 0;
- }
- }
- /* If you are modifying a bitmap you are currently iterating over you
- have to ensure to
- - never remove the current bit;
- - if you set or clear a bit before the current bit this operation
- will not affect the set of bits you are visiting during the iteration;
- - if you set or clear a bit after the current bit it is unspecified
- whether that affects the set of bits you are visiting during the
- iteration.
- If you want to remove the current bit you can delay this to the next
- iteration (and after the iteration in case the last iteration is
- affected). */
- /* Loop over all bits set in BITMAP, starting with MIN and setting
- BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
- should be treated as a read-only variable as it contains loop
- state. */
- #ifndef EXECUTE_IF_SET_IN_BITMAP
- /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
- #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
- for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
- bmp_iter_set (&(ITER), &(BITNUM)); \
- bmp_iter_next (&(ITER), &(BITNUM)))
- #endif
- /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
- and setting BITNUM to the bit number. ITER is a bitmap iterator.
- BITNUM should be treated as a read-only variable as it contains
- loop state. */
- #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
- for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
- &(BITNUM)); \
- bmp_iter_and (&(ITER), &(BITNUM)); \
- bmp_iter_next (&(ITER), &(BITNUM)))
- /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
- and setting BITNUM to the bit number. ITER is a bitmap iterator.
- BITNUM should be treated as a read-only variable as it contains
- loop state. */
- #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
- for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
- &(BITNUM)); \
- bmp_iter_and_compl (&(ITER), &(BITNUM)); \
- bmp_iter_next (&(ITER), &(BITNUM)))
- /* A class that ties the lifetime of a bitmap to its scope. */
- class auto_bitmap
- {
- public:
- auto_bitmap () { bitmap_initialize (&m_bits, &bitmap_default_obstack); }
- explicit auto_bitmap (bitmap_obstack *o) { bitmap_initialize (&m_bits, o); }
- ~auto_bitmap () { bitmap_clear (&m_bits); }
- // Allow calling bitmap functions on our bitmap.
- operator bitmap () { return &m_bits; }
- private:
- // Prevent making a copy that references our bitmap.
- auto_bitmap (const auto_bitmap &);
- auto_bitmap &operator = (const auto_bitmap &);
- #if __cplusplus >= 201103L
- auto_bitmap (auto_bitmap &&);
- auto_bitmap &operator = (auto_bitmap &&);
- #endif
- bitmap_head m_bits;
- };
- #endif /* GCC_BITMAP_H */
|