1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180 |
- /* A type-safe hash table template.
- Copyright (C) 2012-2019 Free Software Foundation, Inc.
- Contributed by Lawrence Crowl <crowl@google.com>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- /* This file implements a typed hash table.
- The implementation borrows from libiberty's htab_t in hashtab.h.
- INTRODUCTION TO TYPES
- Users of the hash table generally need to be aware of three types.
- 1. The type being placed into the hash table. This type is called
- the value type.
- 2. The type used to describe how to handle the value type within
- the hash table. This descriptor type provides the hash table with
- several things.
- - A typedef named 'value_type' to the value type (from above).
- - A static member function named 'hash' that takes a value_type
- (or 'const value_type &') and returns a hashval_t value.
- - A typedef named 'compare_type' that is used to test when a value
- is found. This type is the comparison type. Usually, it will be the
- same as value_type. If it is not the same type, you must generally
- explicitly compute hash values and pass them to the hash table.
- - A static member function named 'equal' that takes a value_type
- and a compare_type, and returns a bool. Both arguments can be
- const references.
- - A static function named 'remove' that takes an value_type pointer
- and frees the memory allocated by it. This function is used when
- individual elements of the table need to be disposed of (e.g.,
- when deleting a hash table, removing elements from the table, etc).
- - An optional static function named 'keep_cache_entry'. This
- function is provided only for garbage-collected elements that
- are not marked by the normal gc mark pass. It describes what
- what should happen to the element at the end of the gc mark phase.
- The return value should be:
- - 0 if the element should be deleted
- - 1 if the element should be kept and needs to be marked
- - -1 if the element should be kept and is already marked.
- Returning -1 rather than 1 is purely an optimization.
- 3. The type of the hash table itself. (More later.)
- In very special circumstances, users may need to know about a fourth type.
- 4. The template type used to describe how hash table memory
- is allocated. This type is called the allocator type. It is
- parameterized on the value type. It provides two functions:
- - A static member function named 'data_alloc'. This function
- allocates the data elements in the table.
- - A static member function named 'data_free'. This function
- deallocates the data elements in the table.
- Hash table are instantiated with two type arguments.
- * The descriptor type, (2) above.
- * The allocator type, (4) above. In general, you will not need to
- provide your own allocator type. By default, hash tables will use
- the class template xcallocator, which uses malloc/free for allocation.
- DEFINING A DESCRIPTOR TYPE
- The first task in using the hash table is to describe the element type.
- We compose this into a few steps.
- 1. Decide on a removal policy for values stored in the table.
- hash-traits.h provides class templates for the four most common
- policies:
- * typed_free_remove implements the static 'remove' member function
- by calling free().
- * typed_noop_remove implements the static 'remove' member function
- by doing nothing.
- * ggc_remove implements the static 'remove' member by doing nothing,
- but instead provides routines for gc marking and for PCH streaming.
- Use this for garbage-collected data that needs to be preserved across
- collections.
- * ggc_cache_remove is like ggc_remove, except that it does not
- mark the entries during the normal gc mark phase. Instead it
- uses 'keep_cache_entry' (described above) to keep elements that
- were not collected and delete those that were. Use this for
- garbage-collected caches that should not in themselves stop
- the data from being collected.
- You can use these policies by simply deriving the descriptor type
- from one of those class template, with the appropriate argument.
- Otherwise, you need to write the static 'remove' member function
- in the descriptor class.
- 2. Choose a hash function. Write the static 'hash' member function.
- 3. Decide whether the lookup function should take as input an object
- of type value_type or something more restricted. Define compare_type
- accordingly.
- 4. Choose an equality testing function 'equal' that compares a value_type
- and a compare_type.
- If your elements are pointers, it is usually easiest to start with one
- of the generic pointer descriptors described below and override the bits
- you need to change.
- AN EXAMPLE DESCRIPTOR TYPE
- Suppose you want to put some_type into the hash table. You could define
- the descriptor type as follows.
- struct some_type_hasher : nofree_ptr_hash <some_type>
- // Deriving from nofree_ptr_hash means that we get a 'remove' that does
- // nothing. This choice is good for raw values.
- {
- static inline hashval_t hash (const value_type *);
- static inline bool equal (const value_type *, const compare_type *);
- };
- inline hashval_t
- some_type_hasher::hash (const value_type *e)
- { ... compute and return a hash value for E ... }
- inline bool
- some_type_hasher::equal (const value_type *p1, const compare_type *p2)
- { ... compare P1 vs P2. Return true if they are the 'same' ... }
- AN EXAMPLE HASH_TABLE DECLARATION
- To instantiate a hash table for some_type:
- hash_table <some_type_hasher> some_type_hash_table;
- There is no need to mention some_type directly, as the hash table will
- obtain it using some_type_hasher::value_type.
- You can then use any of the functions in hash_table's public interface.
- See hash_table for details. The interface is very similar to libiberty's
- htab_t.
- If a hash table is used only in some rare cases, it is possible
- to construct the hash_table lazily before first use. This is done
- through:
- hash_table <some_type_hasher, true> some_type_hash_table;
- which will cause whatever methods actually need the allocated entries
- array to allocate it later.
- EASY DESCRIPTORS FOR POINTERS
- There are four descriptors for pointer elements, one for each of
- the removal policies above:
- * nofree_ptr_hash (based on typed_noop_remove)
- * free_ptr_hash (based on typed_free_remove)
- * ggc_ptr_hash (based on ggc_remove)
- * ggc_cache_ptr_hash (based on ggc_cache_remove)
- These descriptors hash and compare elements by their pointer value,
- rather than what they point to. So, to instantiate a hash table over
- pointers to whatever_type, without freeing the whatever_types, use:
- hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
- HASH TABLE ITERATORS
- The hash table provides standard C++ iterators. For example, consider a
- hash table of some_info. We wish to consume each element of the table:
- extern void consume (some_info *);
- We define a convenience typedef and the hash table:
- typedef hash_table <some_info_hasher> info_table_type;
- info_table_type info_table;
- Then we write the loop in typical C++ style:
- for (info_table_type::iterator iter = info_table.begin ();
- iter != info_table.end ();
- ++iter)
- if ((*iter).status == INFO_READY)
- consume (&*iter);
- Or with common sub-expression elimination:
- for (info_table_type::iterator iter = info_table.begin ();
- iter != info_table.end ();
- ++iter)
- {
- some_info &elem = *iter;
- if (elem.status == INFO_READY)
- consume (&elem);
- }
- One can also use a more typical GCC style:
- typedef some_info *some_info_p;
- some_info *elem_ptr;
- info_table_type::iterator iter;
- FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
- if (elem_ptr->status == INFO_READY)
- consume (elem_ptr);
- */
- #ifndef TYPED_HASHTAB_H
- #define TYPED_HASHTAB_H
- #include "statistics.h"
- #include "ggc.h"
- #include "vec.h"
- #include "hashtab.h"
- #include "inchash.h"
- #include "mem-stats-traits.h"
- #include "hash-traits.h"
- #include "hash-map-traits.h"
- template<typename, typename, typename> class hash_map;
- template<typename, bool, typename> class hash_set;
- /* The ordinary memory allocator. */
- /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
- template <typename Type>
- struct xcallocator
- {
- static Type *data_alloc (size_t count);
- static void data_free (Type *memory);
- };
- /* Allocate memory for COUNT data blocks. */
- template <typename Type>
- inline Type *
- xcallocator <Type>::data_alloc (size_t count)
- {
- return static_cast <Type *> (xcalloc (count, sizeof (Type)));
- }
- /* Free memory for data blocks. */
- template <typename Type>
- inline void
- xcallocator <Type>::data_free (Type *memory)
- {
- return ::free (memory);
- }
- /* Table of primes and their inversion information. */
- struct prime_ent
- {
- hashval_t prime;
- hashval_t inv;
- hashval_t inv_m2; /* inverse of prime-2 */
- hashval_t shift;
- };
- extern struct prime_ent const prime_tab[];
- /* Functions for computing hash table indexes. */
- extern unsigned int hash_table_higher_prime_index (unsigned long n)
- ATTRIBUTE_PURE;
- /* Return X % Y using multiplicative inverse values INV and SHIFT.
- The multiplicative inverses computed above are for 32-bit types,
- and requires that we be able to compute a highpart multiply.
- FIX: I am not at all convinced that
- 3 loads, 2 multiplications, 3 shifts, and 3 additions
- will be faster than
- 1 load and 1 modulus
- on modern systems running a compiler. */
- inline hashval_t
- mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
- {
- hashval_t t1, t2, t3, t4, q, r;
- t1 = ((uint64_t)x * inv) >> 32;
- t2 = x - t1;
- t3 = t2 >> 1;
- t4 = t1 + t3;
- q = t4 >> shift;
- r = x - (q * y);
- return r;
- }
- /* Compute the primary table index for HASH given current prime index. */
- inline hashval_t
- hash_table_mod1 (hashval_t hash, unsigned int index)
- {
- const struct prime_ent *p = &prime_tab[index];
- gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
- return mul_mod (hash, p->prime, p->inv, p->shift);
- }
- /* Compute the secondary table index for HASH given current prime index. */
- inline hashval_t
- hash_table_mod2 (hashval_t hash, unsigned int index)
- {
- const struct prime_ent *p = &prime_tab[index];
- gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
- return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
- }
- class mem_usage;
- /* User-facing hash table type.
- The table stores elements of type Descriptor::value_type and uses
- the static descriptor functions described at the top of the file
- to hash, compare and remove elements.
- Specify the template Allocator to allocate and free memory.
- The default is xcallocator.
- Storage is an implementation detail and should not be used outside the
- hash table code.
- */
- template <typename Descriptor, bool Lazy = false,
- template<typename Type> class Allocator = xcallocator>
- class hash_table
- {
- typedef typename Descriptor::value_type value_type;
- typedef typename Descriptor::compare_type compare_type;
- public:
- explicit hash_table (size_t, bool ggc = false,
- bool gather_mem_stats = GATHER_STATISTICS,
- mem_alloc_origin origin = HASH_TABLE_ORIGIN
- CXX_MEM_STAT_INFO);
- explicit hash_table (const hash_table &, bool ggc = false,
- bool gather_mem_stats = GATHER_STATISTICS,
- mem_alloc_origin origin = HASH_TABLE_ORIGIN
- CXX_MEM_STAT_INFO);
- ~hash_table ();
- /* Create a hash_table in gc memory. */
- static hash_table *
- create_ggc (size_t n CXX_MEM_STAT_INFO)
- {
- hash_table *table = ggc_alloc<hash_table> ();
- new (table) hash_table (n, true, GATHER_STATISTICS,
- HASH_TABLE_ORIGIN PASS_MEM_STAT);
- return table;
- }
- /* Current size (in entries) of the hash table. */
- size_t size () const { return m_size; }
- /* Return the current number of elements in this hash table. */
- size_t elements () const { return m_n_elements - m_n_deleted; }
- /* Return the current number of elements in this hash table. */
- size_t elements_with_deleted () const { return m_n_elements; }
- /* This function clears all entries in this hash table. */
- void empty () { if (elements ()) empty_slow (); }
- /* This function clears a specified SLOT in a hash table. It is
- useful when you've already done the lookup and don't want to do it
- again. */
- void clear_slot (value_type *);
- /* This function searches for a hash table entry equal to the given
- COMPARABLE element starting with the given HASH value. It cannot
- be used to insert or delete an element. */
- value_type &find_with_hash (const compare_type &, hashval_t);
- /* Like find_slot_with_hash, but compute the hash value from the element. */
- value_type &find (const value_type &value)
- {
- return find_with_hash (value, Descriptor::hash (value));
- }
- value_type *find_slot (const value_type &value, insert_option insert)
- {
- return find_slot_with_hash (value, Descriptor::hash (value), insert);
- }
- /* This function searches for a hash table slot containing an entry
- equal to the given COMPARABLE element and starting with the given
- HASH. To delete an entry, call this with insert=NO_INSERT, then
- call clear_slot on the slot returned (possibly after doing some
- checks). To insert an entry, call this with insert=INSERT, then
- write the value you want into the returned slot. When inserting an
- entry, NULL may be returned if memory allocation fails. */
- value_type *find_slot_with_hash (const compare_type &comparable,
- hashval_t hash, enum insert_option insert);
- /* This function deletes an element with the given COMPARABLE value
- from hash table starting with the given HASH. If there is no
- matching element in the hash table, this function does nothing. */
- void remove_elt_with_hash (const compare_type &, hashval_t);
- /* Like remove_elt_with_hash, but compute the hash value from the
- element. */
- void remove_elt (const value_type &value)
- {
- remove_elt_with_hash (value, Descriptor::hash (value));
- }
- /* This function scans over the entire hash table calling CALLBACK for
- each live entry. If CALLBACK returns false, the iteration stops.
- ARGUMENT is passed as CALLBACK's second argument. */
- template <typename Argument,
- int (*Callback) (value_type *slot, Argument argument)>
- void traverse_noresize (Argument argument);
- /* Like traverse_noresize, but does resize the table when it is too empty
- to improve effectivity of subsequent calls. */
- template <typename Argument,
- int (*Callback) (value_type *slot, Argument argument)>
- void traverse (Argument argument);
- class iterator
- {
- public:
- iterator () : m_slot (NULL), m_limit (NULL) {}
- iterator (value_type *slot, value_type *limit) :
- m_slot (slot), m_limit (limit) {}
- inline value_type &operator * () { return *m_slot; }
- void slide ();
- inline iterator &operator ++ ();
- bool operator != (const iterator &other) const
- {
- return m_slot != other.m_slot || m_limit != other.m_limit;
- }
- private:
- value_type *m_slot;
- value_type *m_limit;
- };
- iterator begin () const
- {
- if (Lazy && m_entries == NULL)
- return iterator ();
- iterator iter (m_entries, m_entries + m_size);
- iter.slide ();
- return iter;
- }
- iterator end () const { return iterator (); }
- double collisions () const
- {
- return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
- }
- private:
- template<typename T> friend void gt_ggc_mx (hash_table<T> *);
- template<typename T> friend void gt_pch_nx (hash_table<T> *);
- template<typename T> friend void
- hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
- template<typename T, typename U, typename V> friend void
- gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
- template<typename T, typename U>
- friend void gt_pch_nx (hash_set<T, false, U> *, gt_pointer_operator, void *);
- template<typename T> friend void gt_pch_nx (hash_table<T> *,
- gt_pointer_operator, void *);
- template<typename T> friend void gt_cleare_cache (hash_table<T> *);
- void empty_slow ();
- value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const;
- value_type *find_empty_slot_for_expand (hashval_t);
- bool too_empty_p (unsigned int);
- void expand ();
- static bool is_deleted (value_type &v)
- {
- return Descriptor::is_deleted (v);
- }
- static bool is_empty (value_type &v)
- {
- return Descriptor::is_empty (v);
- }
- static void mark_deleted (value_type &v)
- {
- Descriptor::mark_deleted (v);
- }
- static void mark_empty (value_type &v)
- {
- Descriptor::mark_empty (v);
- }
- /* Table itself. */
- typename Descriptor::value_type *m_entries;
- size_t m_size;
- /* Current number of elements including also deleted elements. */
- size_t m_n_elements;
- /* Current number of deleted elements in the table. */
- size_t m_n_deleted;
- /* The following member is used for debugging. Its value is number
- of all calls of `htab_find_slot' for the hash table. */
- unsigned int m_searches;
- /* The following member is used for debugging. Its value is number
- of collisions fixed for time of work with the hash table. */
- unsigned int m_collisions;
- /* Current size (in entries) of the hash table, as an index into the
- table of primes. */
- unsigned int m_size_prime_index;
- /* if m_entries is stored in ggc memory. */
- bool m_ggc;
- /* If we should gather memory statistics for the table. */
- #if GATHER_STATISTICS
- bool m_gather_mem_stats;
- #else
- static const bool m_gather_mem_stats = false;
- #endif
- };
- /* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
- mem-stats.h after hash_table declaration. */
- #include "mem-stats.h"
- #include "hash-map.h"
- extern mem_alloc_description<mem_usage>& hash_table_usage (void);
- /* Support function for statistics. */
- extern void dump_hash_table_loc_statistics (void);
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- hash_table<Descriptor, Lazy, Allocator>::hash_table (size_t size, bool ggc,
- bool gather_mem_stats
- ATTRIBUTE_UNUSED,
- mem_alloc_origin origin
- MEM_STAT_DECL) :
- m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
- m_ggc (ggc)
- #if GATHER_STATISTICS
- , m_gather_mem_stats (gather_mem_stats)
- #endif
- {
- unsigned int size_prime_index;
- size_prime_index = hash_table_higher_prime_index (size);
- size = prime_tab[size_prime_index].prime;
- if (m_gather_mem_stats)
- hash_table_usage ().register_descriptor (this, origin, ggc
- FINAL_PASS_MEM_STAT);
- if (Lazy)
- m_entries = NULL;
- else
- m_entries = alloc_entries (size PASS_MEM_STAT);
- m_size = size;
- m_size_prime_index = size_prime_index;
- }
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- hash_table<Descriptor, Lazy, Allocator>::hash_table (const hash_table &h,
- bool ggc,
- bool gather_mem_stats
- ATTRIBUTE_UNUSED,
- mem_alloc_origin origin
- MEM_STAT_DECL) :
- m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted),
- m_searches (0), m_collisions (0), m_ggc (ggc)
- #if GATHER_STATISTICS
- , m_gather_mem_stats (gather_mem_stats)
- #endif
- {
- size_t size = h.m_size;
- if (m_gather_mem_stats)
- hash_table_usage ().register_descriptor (this, origin, ggc
- FINAL_PASS_MEM_STAT);
- if (Lazy && h.m_entries == NULL)
- m_entries = NULL;
- else
- {
- value_type *nentries = alloc_entries (size PASS_MEM_STAT);
- for (size_t i = 0; i < size; ++i)
- {
- value_type &entry = h.m_entries[i];
- if (is_deleted (entry))
- mark_deleted (nentries[i]);
- else if (!is_empty (entry))
- nentries[i] = entry;
- }
- m_entries = nentries;
- }
- m_size = size;
- m_size_prime_index = h.m_size_prime_index;
- }
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- hash_table<Descriptor, Lazy, Allocator>::~hash_table ()
- {
- if (!Lazy || m_entries)
- {
- for (size_t i = m_size - 1; i < m_size; i--)
- if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
- Descriptor::remove (m_entries[i]);
- if (!m_ggc)
- Allocator <value_type> ::data_free (m_entries);
- else
- ggc_free (m_entries);
- if (m_gather_mem_stats)
- hash_table_usage ().release_instance_overhead (this,
- sizeof (value_type)
- * m_size, true);
- }
- else if (m_gather_mem_stats)
- hash_table_usage ().unregister_descriptor (this);
- }
- /* This function returns an array of empty hash table elements. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- inline typename hash_table<Descriptor, Lazy, Allocator>::value_type *
- hash_table<Descriptor, Lazy,
- Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
- {
- value_type *nentries;
- if (m_gather_mem_stats)
- hash_table_usage ().register_instance_overhead (sizeof (value_type) * n, this);
- if (!m_ggc)
- nentries = Allocator <value_type> ::data_alloc (n);
- else
- nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT);
- gcc_assert (nentries != NULL);
- for (size_t i = 0; i < n; i++)
- mark_empty (nentries[i]);
- return nentries;
- }
- /* Similar to find_slot, but without several unwanted side effects:
- - Does not call equal when it finds an existing entry.
- - Does not change the count of elements/searches/collisions in the
- hash table.
- This function also assumes there are no deleted entries in the table.
- HASH is the hash value for the element to be inserted. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- typename hash_table<Descriptor, Lazy, Allocator>::value_type *
- hash_table<Descriptor, Lazy,
- Allocator>::find_empty_slot_for_expand (hashval_t hash)
- {
- hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
- size_t size = m_size;
- value_type *slot = m_entries + index;
- hashval_t hash2;
- if (is_empty (*slot))
- return slot;
- gcc_checking_assert (!is_deleted (*slot));
- hash2 = hash_table_mod2 (hash, m_size_prime_index);
- for (;;)
- {
- index += hash2;
- if (index >= size)
- index -= size;
- slot = m_entries + index;
- if (is_empty (*slot))
- return slot;
- gcc_checking_assert (!is_deleted (*slot));
- }
- }
- /* Return true if the current table is excessively big for ELTS elements. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- inline bool
- hash_table<Descriptor, Lazy, Allocator>::too_empty_p (unsigned int elts)
- {
- return elts * 8 < m_size && m_size > 32;
- }
- /* The following function changes size of memory allocated for the
- entries and repeatedly inserts the table elements. The occupancy
- of the table after the call will be about 50%. Naturally the hash
- table must already exist. Remember also that the place of the
- table entries is changed. If memory allocation fails, this function
- will abort. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- void
- hash_table<Descriptor, Lazy, Allocator>::expand ()
- {
- value_type *oentries = m_entries;
- unsigned int oindex = m_size_prime_index;
- size_t osize = size ();
- value_type *olimit = oentries + osize;
- size_t elts = elements ();
- /* Resize only when table after removal of unused elements is either
- too full or too empty. */
- unsigned int nindex;
- size_t nsize;
- if (elts * 2 > osize || too_empty_p (elts))
- {
- nindex = hash_table_higher_prime_index (elts * 2);
- nsize = prime_tab[nindex].prime;
- }
- else
- {
- nindex = oindex;
- nsize = osize;
- }
- value_type *nentries = alloc_entries (nsize);
- if (m_gather_mem_stats)
- hash_table_usage ().release_instance_overhead (this, sizeof (value_type)
- * osize);
- m_entries = nentries;
- m_size = nsize;
- m_size_prime_index = nindex;
- m_n_elements -= m_n_deleted;
- m_n_deleted = 0;
- value_type *p = oentries;
- do
- {
- value_type &x = *p;
- if (!is_empty (x) && !is_deleted (x))
- {
- value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
- *q = x;
- }
- p++;
- }
- while (p < olimit);
- if (!m_ggc)
- Allocator <value_type> ::data_free (oentries);
- else
- ggc_free (oentries);
- }
- /* Implements empty() in cases where it isn't a no-op. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- void
- hash_table<Descriptor, Lazy, Allocator>::empty_slow ()
- {
- size_t size = m_size;
- size_t nsize = size;
- value_type *entries = m_entries;
- int i;
- for (i = size - 1; i >= 0; i--)
- if (!is_empty (entries[i]) && !is_deleted (entries[i]))
- Descriptor::remove (entries[i]);
- /* Instead of clearing megabyte, downsize the table. */
- if (size > 1024*1024 / sizeof (value_type))
- nsize = 1024 / sizeof (value_type);
- else if (too_empty_p (m_n_elements))
- nsize = m_n_elements * 2;
- if (nsize != size)
- {
- int nindex = hash_table_higher_prime_index (nsize);
- int nsize = prime_tab[nindex].prime;
- if (!m_ggc)
- Allocator <value_type> ::data_free (m_entries);
- else
- ggc_free (m_entries);
- m_entries = alloc_entries (nsize);
- m_size = nsize;
- m_size_prime_index = nindex;
- }
- else
- {
- #ifndef BROKEN_VALUE_INITIALIZATION
- for ( ; size; ++entries, --size)
- *entries = value_type ();
- #else
- memset (entries, 0, size * sizeof (value_type));
- #endif
- }
- m_n_deleted = 0;
- m_n_elements = 0;
- }
- /* This function clears a specified SLOT in a hash table. It is
- useful when you've already done the lookup and don't want to do it
- again. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- void
- hash_table<Descriptor, Lazy, Allocator>::clear_slot (value_type *slot)
- {
- gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
- || is_empty (*slot) || is_deleted (*slot)));
- Descriptor::remove (*slot);
- mark_deleted (*slot);
- m_n_deleted++;
- }
- /* This function searches for a hash table entry equal to the given
- COMPARABLE element starting with the given HASH value. It cannot
- be used to insert or delete an element. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- typename hash_table<Descriptor, Lazy, Allocator>::value_type &
- hash_table<Descriptor, Lazy, Allocator>
- ::find_with_hash (const compare_type &comparable, hashval_t hash)
- {
- m_searches++;
- size_t size = m_size;
- hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
- if (Lazy && m_entries == NULL)
- m_entries = alloc_entries (size);
- value_type *entry = &m_entries[index];
- if (is_empty (*entry)
- || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
- return *entry;
- hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
- for (;;)
- {
- m_collisions++;
- index += hash2;
- if (index >= size)
- index -= size;
- entry = &m_entries[index];
- if (is_empty (*entry)
- || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
- return *entry;
- }
- }
- /* This function searches for a hash table slot containing an entry
- equal to the given COMPARABLE element and starting with the given
- HASH. To delete an entry, call this with insert=NO_INSERT, then
- call clear_slot on the slot returned (possibly after doing some
- checks). To insert an entry, call this with insert=INSERT, then
- write the value you want into the returned slot. When inserting an
- entry, NULL may be returned if memory allocation fails. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- typename hash_table<Descriptor, Lazy, Allocator>::value_type *
- hash_table<Descriptor, Lazy, Allocator>
- ::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
- enum insert_option insert)
- {
- if (Lazy && m_entries == NULL)
- {
- if (insert == INSERT)
- m_entries = alloc_entries (m_size);
- else
- return NULL;
- }
- if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
- expand ();
- m_searches++;
- value_type *first_deleted_slot = NULL;
- hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
- hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
- value_type *entry = &m_entries[index];
- size_t size = m_size;
- if (is_empty (*entry))
- goto empty_entry;
- else if (is_deleted (*entry))
- first_deleted_slot = &m_entries[index];
- else if (Descriptor::equal (*entry, comparable))
- return &m_entries[index];
- for (;;)
- {
- m_collisions++;
- index += hash2;
- if (index >= size)
- index -= size;
- entry = &m_entries[index];
- if (is_empty (*entry))
- goto empty_entry;
- else if (is_deleted (*entry))
- {
- if (!first_deleted_slot)
- first_deleted_slot = &m_entries[index];
- }
- else if (Descriptor::equal (*entry, comparable))
- return &m_entries[index];
- }
- empty_entry:
- if (insert == NO_INSERT)
- return NULL;
- if (first_deleted_slot)
- {
- m_n_deleted--;
- mark_empty (*first_deleted_slot);
- return first_deleted_slot;
- }
- m_n_elements++;
- return &m_entries[index];
- }
- /* This function deletes an element with the given COMPARABLE value
- from hash table starting with the given HASH. If there is no
- matching element in the hash table, this function does nothing. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- void
- hash_table<Descriptor, Lazy, Allocator>
- ::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
- {
- value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
- if (slot == NULL)
- return;
- Descriptor::remove (*slot);
- mark_deleted (*slot);
- m_n_deleted++;
- }
- /* This function scans over the entire hash table calling CALLBACK for
- each live entry. If CALLBACK returns false, the iteration stops.
- ARGUMENT is passed as CALLBACK's second argument. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- template<typename Argument,
- int (*Callback)
- (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
- Argument argument)>
- void
- hash_table<Descriptor, Lazy, Allocator>::traverse_noresize (Argument argument)
- {
- if (Lazy && m_entries == NULL)
- return;
- value_type *slot = m_entries;
- value_type *limit = slot + size ();
- do
- {
- value_type &x = *slot;
- if (!is_empty (x) && !is_deleted (x))
- if (! Callback (slot, argument))
- break;
- }
- while (++slot < limit);
- }
- /* Like traverse_noresize, but does resize the table when it is too empty
- to improve effectivity of subsequent calls. */
- template <typename Descriptor, bool Lazy,
- template <typename Type> class Allocator>
- template <typename Argument,
- int (*Callback)
- (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
- Argument argument)>
- void
- hash_table<Descriptor, Lazy, Allocator>::traverse (Argument argument)
- {
- if (too_empty_p (elements ()) && (!Lazy || m_entries))
- expand ();
- traverse_noresize <Argument, Callback> (argument);
- }
- /* Slide down the iterator slots until an active entry is found. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- void
- hash_table<Descriptor, Lazy, Allocator>::iterator::slide ()
- {
- for ( ; m_slot < m_limit; ++m_slot )
- {
- value_type &x = *m_slot;
- if (!is_empty (x) && !is_deleted (x))
- return;
- }
- m_slot = NULL;
- m_limit = NULL;
- }
- /* Bump the iterator. */
- template<typename Descriptor, bool Lazy,
- template<typename Type> class Allocator>
- inline typename hash_table<Descriptor, Lazy, Allocator>::iterator &
- hash_table<Descriptor, Lazy, Allocator>::iterator::operator ++ ()
- {
- ++m_slot;
- slide ();
- return *this;
- }
- /* Iterate through the elements of hash_table HTAB,
- using hash_table <....>::iterator ITER,
- storing each element in RESULT, which is of type TYPE. */
- #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
- for ((ITER) = (HTAB).begin (); \
- (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
- ++(ITER))
- /* ggc walking routines. */
- template<typename E>
- static inline void
- gt_ggc_mx (hash_table<E> *h)
- {
- typedef hash_table<E> table;
- if (!ggc_test_and_set_mark (h->m_entries))
- return;
- for (size_t i = 0; i < h->m_size; i++)
- {
- if (table::is_empty (h->m_entries[i])
- || table::is_deleted (h->m_entries[i]))
- continue;
- /* Use ggc_maxbe_mx so we don't mark right away for cache tables; we'll
- mark in gt_cleare_cache if appropriate. */
- E::ggc_maybe_mx (h->m_entries[i]);
- }
- }
- template<typename D>
- static inline void
- hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
- void *cookie)
- {
- hash_table<D> *map = static_cast<hash_table<D> *> (h);
- gcc_checking_assert (map->m_entries == obj);
- for (size_t i = 0; i < map->m_size; i++)
- {
- typedef hash_table<D> table;
- if (table::is_empty (map->m_entries[i])
- || table::is_deleted (map->m_entries[i]))
- continue;
- D::pch_nx (map->m_entries[i], op, cookie);
- }
- }
- template<typename D>
- static void
- gt_pch_nx (hash_table<D> *h)
- {
- bool success
- = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
- gcc_checking_assert (success);
- for (size_t i = 0; i < h->m_size; i++)
- {
- if (hash_table<D>::is_empty (h->m_entries[i])
- || hash_table<D>::is_deleted (h->m_entries[i]))
- continue;
- D::pch_nx (h->m_entries[i]);
- }
- }
- template<typename D>
- static inline void
- gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
- {
- op (&h->m_entries, cookie);
- }
- template<typename H>
- inline void
- gt_cleare_cache (hash_table<H> *h)
- {
- typedef hash_table<H> table;
- if (!h)
- return;
- for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter)
- if (!table::is_empty (*iter) && !table::is_deleted (*iter))
- {
- int res = H::keep_cache_entry (*iter);
- if (res == 0)
- h->clear_slot (&*iter);
- else if (res != -1)
- H::ggc_mx (*iter);
- }
- }
- #endif /* TYPED_HASHTAB_H */
|