123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- /* SparseSet implementation.
- Copyright (C) 2007-2019 Free Software Foundation, Inc.
- Contributed by Peter Bergner <bergner@vnet.ibm.com>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #ifndef GCC_SPARSESET_H
- #define GCC_SPARSESET_H
- /* Implementation of the Briggs and Torczon sparse set representation.
- The sparse set representation was first published in:
- "An Efficient Representation for Sparse Sets",
- ACM LOPLAS, Vol. 2, Nos. 1-4, March-December 1993, Pages 59-69.
- The sparse set representation is suitable for integer sets with a
- fixed-size universe. Two vectors are used to store the members of
- the set. If an element I is in the set, then sparse[I] is the
- index of I in the dense vector, and dense[sparse[I]] == I. The dense
- vector works like a stack. The size of the stack is the cardinality
- of the set.
- The following operations can be performed in O(1) time:
- * clear : sparseset_clear
- * cardinality : sparseset_cardinality
- * set_size : sparseset_size
- * member_p : sparseset_bit_p
- * add_member : sparseset_set_bit
- * remove_member : sparseset_clear_bit
- * choose_one : sparseset_pop
- Additionally, the sparse set representation supports enumeration of
- the members in O(N) time, where n is the number of members in the set.
- The members of the set are stored cache-friendly in the dense vector.
- This makes it a competitive choice for iterating over relatively sparse
- sets requiring operations:
- * forall : EXECUTE_IF_SET_IN_SPARSESET
- * set_copy : sparseset_copy
- * set_intersection : sparseset_and
- * set_union : sparseset_ior
- * set_difference : sparseset_and_compl
- * set_disjuction : (not implemented)
- * set_compare : sparseset_equal_p
- NB: It is OK to use remove_member during EXECUTE_IF_SET_IN_SPARSESET.
- The iterator is updated for it.
- Based on the efficiency of these operations, this representation of
- sparse sets will often be superior to alternatives such as simple
- bitmaps, linked-list bitmaps, array bitmaps, balanced binary trees,
- hash tables, linked lists, etc., if the set is sufficiently sparse.
- In the LOPLAS paper the cut-off point where sparse sets became faster
- than simple bitmaps (see sbitmap.h) when N / U < 64 (where U is the
- size of the universe of the set).
- Because the set universe is fixed, the set cannot be resized. For
- sparse sets with initially unknown size, linked-list bitmaps are a
- better choice, see bitmap.h.
- Sparse sets storage requirements are relatively large: O(U) with a
- larger constant than sbitmaps (if the storage requirement for an
- sbitmap with universe U is S, then the storage required for a sparse
- set for the same universe are 2*HOST_BITS_PER_WIDEST_FAST_INT * S).
- Accessing the sparse vector is not very cache-friendly, but iterating
- over the members in the set is cache-friendly because only the dense
- vector is used. */
- /* Data Structure used for the SparseSet representation. */
- #define SPARSESET_ELT_BITS ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
- #define SPARSESET_ELT_TYPE unsigned HOST_WIDEST_FAST_INT
- typedef struct sparseset_def
- {
- SPARSESET_ELT_TYPE *dense; /* Dense array. */
- SPARSESET_ELT_TYPE *sparse; /* Sparse array. */
- SPARSESET_ELT_TYPE members; /* Number of elements. */
- SPARSESET_ELT_TYPE size; /* Maximum number of elements. */
- SPARSESET_ELT_TYPE iter; /* Iterator index. */
- unsigned char iter_inc; /* Iteration increment amount. */
- bool iterating;
- SPARSESET_ELT_TYPE elms[2]; /* Combined dense and sparse arrays. */
- } *sparseset;
- #define sparseset_free(MAP) free(MAP)
- extern sparseset sparseset_alloc (SPARSESET_ELT_TYPE n_elms);
- extern void sparseset_clear_bit (sparseset, SPARSESET_ELT_TYPE);
- extern void sparseset_copy (sparseset, sparseset);
- extern void sparseset_and (sparseset, sparseset, sparseset);
- extern void sparseset_and_compl (sparseset, sparseset, sparseset);
- extern void sparseset_ior (sparseset, sparseset, sparseset);
- extern bool sparseset_equal_p (sparseset, sparseset);
- /* Operation: S = {}
- Clear the set of all elements. */
- static inline void
- sparseset_clear (sparseset s)
- {
- s->members = 0;
- s->iterating = false;
- }
- /* Return the number of elements currently in the set. */
- static inline SPARSESET_ELT_TYPE
- sparseset_cardinality (sparseset s)
- {
- return s->members;
- }
- /* Return the maximum number of elements this set can hold. */
- static inline SPARSESET_ELT_TYPE
- sparseset_size (sparseset s)
- {
- return s->size;
- }
- /* Return true if e is a member of the set S, otherwise return false. */
- static inline bool
- sparseset_bit_p (sparseset s, SPARSESET_ELT_TYPE e)
- {
- SPARSESET_ELT_TYPE idx;
- gcc_checking_assert (e < s->size);
- idx = s->sparse[e];
- return idx < s->members && s->dense[idx] == e;
- }
- /* Low level insertion routine not meant for use outside of sparseset.[ch].
- Assumes E is valid and not already a member of the set S. */
- static inline void
- sparseset_insert_bit (sparseset s, SPARSESET_ELT_TYPE e, SPARSESET_ELT_TYPE idx)
- {
- s->sparse[e] = idx;
- s->dense[idx] = e;
- }
- /* Operation: S = S + {e}
- Insert E into the set S, if it isn't already a member. */
- static inline void
- sparseset_set_bit (sparseset s, SPARSESET_ELT_TYPE e)
- {
- if (!sparseset_bit_p (s, e))
- sparseset_insert_bit (s, e, s->members++);
- }
- /* Return and remove the last member added to the set S. */
- static inline SPARSESET_ELT_TYPE
- sparseset_pop (sparseset s)
- {
- SPARSESET_ELT_TYPE mem = s->members;
- gcc_checking_assert (mem != 0);
- s->members = mem - 1;
- return s->dense[s->members];
- }
- static inline void
- sparseset_iter_init (sparseset s)
- {
- s->iter = 0;
- s->iter_inc = 1;
- s->iterating = true;
- }
- static inline bool
- sparseset_iter_p (sparseset s)
- {
- if (s->iterating && s->iter < s->members)
- return true;
- else
- return s->iterating = false;
- }
- static inline SPARSESET_ELT_TYPE
- sparseset_iter_elm (sparseset s)
- {
- return s->dense[s->iter];
- }
- static inline void
- sparseset_iter_next (sparseset s)
- {
- s->iter += s->iter_inc;
- s->iter_inc = 1;
- }
- #define EXECUTE_IF_SET_IN_SPARSESET(SPARSESET, ITER) \
- for (sparseset_iter_init (SPARSESET); \
- sparseset_iter_p (SPARSESET) \
- && (((ITER) = sparseset_iter_elm (SPARSESET)) || 1); \
- sparseset_iter_next (SPARSESET))
- #endif /* GCC_SPARSESET_H */
|