12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976 |
- /* Vector API for GNU compiler.
- Copyright (C) 2004-2019 Free Software Foundation, Inc.
- Contributed by Nathan Sidwell <nathan@codesourcery.com>
- Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #ifndef GCC_VEC_H
- #define GCC_VEC_H
- /* Some gen* file have no ggc support as the header file gtype-desc.h is
- missing. Provide these definitions in case ggc.h has not been included.
- This is not a problem because any code that runs before gengtype is built
- will never need to use GC vectors.*/
- extern void ggc_free (void *);
- extern size_t ggc_round_alloc_size (size_t requested_size);
- extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
- /* Templated vector type and associated interfaces.
- The interface functions are typesafe and use inline functions,
- sometimes backed by out-of-line generic functions. The vectors are
- designed to interoperate with the GTY machinery.
- There are both 'index' and 'iterate' accessors. The index accessor
- is implemented by operator[]. The iterator returns a boolean
- iteration condition and updates the iteration variable passed by
- reference. Because the iterator will be inlined, the address-of
- can be optimized away.
- Each operation that increases the number of active elements is
- available in 'quick' and 'safe' variants. The former presumes that
- there is sufficient allocated space for the operation to succeed
- (it dies if there is not). The latter will reallocate the
- vector, if needed. Reallocation causes an exponential increase in
- vector size. If you know you will be adding N elements, it would
- be more efficient to use the reserve operation before adding the
- elements with the 'quick' operation. This will ensure there are at
- least as many elements as you ask for, it will exponentially
- increase if there are too few spare slots. If you want reserve a
- specific number of slots, but do not want the exponential increase
- (for instance, you know this is the last allocation), use the
- reserve_exact operation. You can also create a vector of a
- specific size from the get go.
- You should prefer the push and pop operations, as they append and
- remove from the end of the vector. If you need to remove several
- items in one go, use the truncate operation. The insert and remove
- operations allow you to change elements in the middle of the
- vector. There are two remove operations, one which preserves the
- element ordering 'ordered_remove', and one which does not
- 'unordered_remove'. The latter function copies the end element
- into the removed slot, rather than invoke a memmove operation. The
- 'lower_bound' function will determine where to place an item in the
- array using insert that will maintain sorted order.
- Vectors are template types with three arguments: the type of the
- elements in the vector, the allocation strategy, and the physical
- layout to use
- Four allocation strategies are supported:
- - Heap: allocation is done using malloc/free. This is the
- default allocation strategy.
- - GC: allocation is done using ggc_alloc/ggc_free.
- - GC atomic: same as GC with the exception that the elements
- themselves are assumed to be of an atomic type that does
- not need to be garbage collected. This means that marking
- routines do not need to traverse the array marking the
- individual elements. This increases the performance of
- GC activities.
- Two physical layouts are supported:
- - Embedded: The vector is structured using the trailing array
- idiom. The last member of the structure is an array of size
- 1. When the vector is initially allocated, a single memory
- block is created to hold the vector's control data and the
- array of elements. These vectors cannot grow without
- reallocation (see discussion on embeddable vectors below).
- - Space efficient: The vector is structured as a pointer to an
- embedded vector. This is the default layout. It means that
- vectors occupy a single word of storage before initial
- allocation. Vectors are allowed to grow (the internal
- pointer is reallocated but the main vector instance does not
- need to relocate).
- The type, allocation and layout are specified when the vector is
- declared.
- If you need to directly manipulate a vector, then the 'address'
- accessor will return the address of the start of the vector. Also
- the 'space' predicate will tell you whether there is spare capacity
- in the vector. You will not normally need to use these two functions.
- Notes on the different layout strategies
- * Embeddable vectors (vec<T, A, vl_embed>)
-
- These vectors are suitable to be embedded in other data
- structures so that they can be pre-allocated in a contiguous
- memory block.
- Embeddable vectors are implemented using the trailing array
- idiom, thus they are not resizeable without changing the address
- of the vector object itself. This means you cannot have
- variables or fields of embeddable vector type -- always use a
- pointer to a vector. The one exception is the final field of a
- structure, which could be a vector type.
- You will have to use the embedded_size & embedded_init calls to
- create such objects, and they will not be resizeable (so the
- 'safe' allocation variants are not available).
- Properties of embeddable vectors:
- - The whole vector and control data are allocated in a single
- contiguous block. It uses the trailing-vector idiom, so
- allocation must reserve enough space for all the elements
- in the vector plus its control data.
- - The vector cannot be re-allocated.
- - The vector cannot grow nor shrink.
- - No indirections needed for access/manipulation.
- - It requires 2 words of storage (prior to vector allocation).
- * Space efficient vector (vec<T, A, vl_ptr>)
- These vectors can grow dynamically and are allocated together
- with their control data. They are suited to be included in data
- structures. Prior to initial allocation, they only take a single
- word of storage.
- These vectors are implemented as a pointer to embeddable vectors.
- The semantics allow for this pointer to be NULL to represent
- empty vectors. This way, empty vectors occupy minimal space in
- the structure containing them.
- Properties:
- - The whole vector and control data are allocated in a single
- contiguous block.
- - The whole vector may be re-allocated.
- - Vector data may grow and shrink.
- - Access and manipulation requires a pointer test and
- indirection.
- - It requires 1 word of storage (prior to vector allocation).
- An example of their use would be,
- struct my_struct {
- // A space-efficient vector of tree pointers in GC memory.
- vec<tree, va_gc, vl_ptr> v;
- };
- struct my_struct *s;
- if (s->v.length ()) { we have some contents }
- s->v.safe_push (decl); // append some decl onto the end
- for (ix = 0; s->v.iterate (ix, &elt); ix++)
- { do something with elt }
- */
- /* Support function for statistics. */
- extern void dump_vec_loc_statistics (void);
- /* Hashtable mapping vec addresses to descriptors. */
- extern htab_t vec_mem_usage_hash;
- /* Control data for vectors. This contains the number of allocated
- and used slots inside a vector. */
- struct vec_prefix
- {
- /* FIXME - These fields should be private, but we need to cater to
- compilers that have stricter notions of PODness for types. */
- /* Memory allocation support routines in vec.c. */
- void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
- void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
- static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
- static unsigned calculate_allocation_1 (unsigned, unsigned);
- /* Note that vec_prefix should be a base class for vec, but we use
- offsetof() on vector fields of tree structures (e.g.,
- tree_binfo::base_binfos), and offsetof only supports base types.
- To compensate, we make vec_prefix a field inside vec and make
- vec a friend class of vec_prefix so it can access its fields. */
- template <typename, typename, typename> friend struct vec;
- /* The allocator types also need access to our internals. */
- friend struct va_gc;
- friend struct va_gc_atomic;
- friend struct va_heap;
- unsigned m_alloc : 31;
- unsigned m_using_auto_storage : 1;
- unsigned m_num;
- };
- /* Calculate the number of slots to reserve a vector, making sure that
- RESERVE slots are free. If EXACT grow exactly, otherwise grow
- exponentially. PFX is the control data for the vector. */
- inline unsigned
- vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
- bool exact)
- {
- if (exact)
- return (pfx ? pfx->m_num : 0) + reserve;
- else if (!pfx)
- return MAX (4, reserve);
- return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
- }
- template<typename, typename, typename> struct vec;
- /* Valid vector layouts
- vl_embed - Embeddable vector that uses the trailing array idiom.
- vl_ptr - Space efficient vector that uses a pointer to an
- embeddable vector. */
- struct vl_embed { };
- struct vl_ptr { };
- /* Types of supported allocations
- va_heap - Allocation uses malloc/free.
- va_gc - Allocation uses ggc_alloc.
- va_gc_atomic - Same as GC, but individual elements of the array
- do not need to be marked during collection. */
- /* Allocator type for heap vectors. */
- struct va_heap
- {
- /* Heap vectors are frequently regular instances, so use the vl_ptr
- layout for them. */
- typedef vl_ptr default_layout;
- template<typename T>
- static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
- CXX_MEM_STAT_INFO);
- template<typename T>
- static void release (vec<T, va_heap, vl_embed> *&);
- };
- /* Allocator for heap memory. Ensure there are at least RESERVE free
- slots in V. If EXACT is true, grow exactly, else grow
- exponentially. As a special case, if the vector had not been
- allocated and RESERVE is 0, no vector will be created. */
- template<typename T>
- inline void
- va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
- MEM_STAT_DECL)
- {
- size_t elt_size = sizeof (T);
- unsigned alloc
- = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
- gcc_checking_assert (alloc);
- if (GATHER_STATISTICS && v)
- v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
- v->allocated (), false);
- size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
- unsigned nelem = v ? v->length () : 0;
- v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
- v->embedded_init (alloc, nelem);
- if (GATHER_STATISTICS)
- v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
- }
- /* Free the heap space allocated for vector V. */
- template<typename T>
- void
- va_heap::release (vec<T, va_heap, vl_embed> *&v)
- {
- size_t elt_size = sizeof (T);
- if (v == NULL)
- return;
- if (GATHER_STATISTICS)
- v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
- v->allocated (), true);
- ::free (v);
- v = NULL;
- }
- /* Allocator type for GC vectors. Notice that we need the structure
- declaration even if GC is not enabled. */
- struct va_gc
- {
- /* Use vl_embed as the default layout for GC vectors. Due to GTY
- limitations, GC vectors must always be pointers, so it is more
- efficient to use a pointer to the vl_embed layout, rather than
- using a pointer to a pointer as would be the case with vl_ptr. */
- typedef vl_embed default_layout;
- template<typename T, typename A>
- static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
- CXX_MEM_STAT_INFO);
- template<typename T, typename A>
- static void release (vec<T, A, vl_embed> *&v);
- };
- /* Free GC memory used by V and reset V to NULL. */
- template<typename T, typename A>
- inline void
- va_gc::release (vec<T, A, vl_embed> *&v)
- {
- if (v)
- ::ggc_free (v);
- v = NULL;
- }
- /* Allocator for GC memory. Ensure there are at least RESERVE free
- slots in V. If EXACT is true, grow exactly, else grow
- exponentially. As a special case, if the vector had not been
- allocated and RESERVE is 0, no vector will be created. */
- template<typename T, typename A>
- void
- va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
- MEM_STAT_DECL)
- {
- unsigned alloc
- = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
- if (!alloc)
- {
- ::ggc_free (v);
- v = NULL;
- return;
- }
- /* Calculate the amount of space we want. */
- size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
- /* Ask the allocator how much space it will really give us. */
- size = ::ggc_round_alloc_size (size);
- /* Adjust the number of slots accordingly. */
- size_t vec_offset = sizeof (vec_prefix);
- size_t elt_size = sizeof (T);
- alloc = (size - vec_offset) / elt_size;
- /* And finally, recalculate the amount of space we ask for. */
- size = vec_offset + alloc * elt_size;
- unsigned nelem = v ? v->length () : 0;
- v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
- PASS_MEM_STAT));
- v->embedded_init (alloc, nelem);
- }
- /* Allocator type for GC vectors. This is for vectors of types
- atomics w.r.t. collection, so allocation and deallocation is
- completely inherited from va_gc. */
- struct va_gc_atomic : va_gc
- {
- };
- /* Generic vector template. Default values for A and L indicate the
- most commonly used strategies.
- FIXME - Ideally, they would all be vl_ptr to encourage using regular
- instances for vectors, but the existing GTY machinery is limited
- in that it can only deal with GC objects that are pointers
- themselves.
- This means that vector operations that need to deal with
- potentially NULL pointers, must be provided as free
- functions (see the vec_safe_* functions above). */
- template<typename T,
- typename A = va_heap,
- typename L = typename A::default_layout>
- struct GTY((user)) vec
- {
- };
- /* Generic vec<> debug helpers.
- These need to be instantiated for each vec<TYPE> used throughout
- the compiler like this:
- DEFINE_DEBUG_VEC (TYPE)
- The reason we have a debug_helper() is because GDB can't
- disambiguate a plain call to debug(some_vec), and it must be called
- like debug<TYPE>(some_vec). */
- template<typename T>
- void
- debug_helper (vec<T> &ref)
- {
- unsigned i;
- for (i = 0; i < ref.length (); ++i)
- {
- fprintf (stderr, "[%d] = ", i);
- debug_slim (ref[i]);
- fputc ('\n', stderr);
- }
- }
- /* We need a separate va_gc variant here because default template
- argument for functions cannot be used in c++-98. Once this
- restriction is removed, those variant should be folded with the
- above debug_helper. */
- template<typename T>
- void
- debug_helper (vec<T, va_gc> &ref)
- {
- unsigned i;
- for (i = 0; i < ref.length (); ++i)
- {
- fprintf (stderr, "[%d] = ", i);
- debug_slim (ref[i]);
- fputc ('\n', stderr);
- }
- }
- /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
- functions for a type T. */
- #define DEFINE_DEBUG_VEC(T) \
- template void debug_helper (vec<T> &); \
- template void debug_helper (vec<T, va_gc> &); \
- /* Define the vec<T> debug functions. */ \
- DEBUG_FUNCTION void \
- debug (vec<T> &ref) \
- { \
- debug_helper <T> (ref); \
- } \
- DEBUG_FUNCTION void \
- debug (vec<T> *ptr) \
- { \
- if (ptr) \
- debug (*ptr); \
- else \
- fprintf (stderr, "<nil>\n"); \
- } \
- /* Define the vec<T, va_gc> debug functions. */ \
- DEBUG_FUNCTION void \
- debug (vec<T, va_gc> &ref) \
- { \
- debug_helper <T> (ref); \
- } \
- DEBUG_FUNCTION void \
- debug (vec<T, va_gc> *ptr) \
- { \
- if (ptr) \
- debug (*ptr); \
- else \
- fprintf (stderr, "<nil>\n"); \
- }
- /* Default-construct N elements in DST. */
- template <typename T>
- inline void
- vec_default_construct (T *dst, unsigned n)
- {
- #ifdef BROKEN_VALUE_INITIALIZATION
- /* Versions of GCC before 4.4 sometimes leave certain objects
- uninitialized when value initialized, though if the type has
- user defined default ctor, that ctor is invoked. As a workaround
- perform clearing first and then the value initialization, which
- fixes the case when value initialization doesn't initialize due to
- the bugs and should initialize to all zeros, but still allows
- vectors for types with user defined default ctor that initializes
- some or all elements to non-zero. If T has no user defined
- default ctor and some non-static data members have user defined
- default ctors that initialize to non-zero the workaround will
- still not work properly; in that case we just need to provide
- user defined default ctor. */
- memset (dst, '\0', sizeof (T) * n);
- #endif
- for ( ; n; ++dst, --n)
- ::new (static_cast<void*>(dst)) T ();
- }
- /* Copy-construct N elements in DST from *SRC. */
- template <typename T>
- inline void
- vec_copy_construct (T *dst, const T *src, unsigned n)
- {
- for ( ; n; ++dst, ++src, --n)
- ::new (static_cast<void*>(dst)) T (*src);
- }
- /* Type to provide NULL values for vec<T, A, L>. This is used to
- provide nil initializers for vec instances. Since vec must be
- a POD, we cannot have proper ctor/dtor for it. To initialize
- a vec instance, you can assign it the value vNULL. This isn't
- needed for file-scope and function-local static vectors, which
- are zero-initialized by default. */
- struct vnull
- {
- template <typename T, typename A, typename L>
- CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); }
- };
- extern vnull vNULL;
- /* Embeddable vector. These vectors are suitable to be embedded
- in other data structures so that they can be pre-allocated in a
- contiguous memory block.
- Embeddable vectors are implemented using the trailing array idiom,
- thus they are not resizeable without changing the address of the
- vector object itself. This means you cannot have variables or
- fields of embeddable vector type -- always use a pointer to a
- vector. The one exception is the final field of a structure, which
- could be a vector type.
- You will have to use the embedded_size & embedded_init calls to
- create such objects, and they will not be resizeable (so the 'safe'
- allocation variants are not available).
- Properties:
- - The whole vector and control data are allocated in a single
- contiguous block. It uses the trailing-vector idiom, so
- allocation must reserve enough space for all the elements
- in the vector plus its control data.
- - The vector cannot be re-allocated.
- - The vector cannot grow nor shrink.
- - No indirections needed for access/manipulation.
- - It requires 2 words of storage (prior to vector allocation). */
- template<typename T, typename A>
- struct GTY((user)) vec<T, A, vl_embed>
- {
- public:
- unsigned allocated (void) const { return m_vecpfx.m_alloc; }
- unsigned length (void) const { return m_vecpfx.m_num; }
- bool is_empty (void) const { return m_vecpfx.m_num == 0; }
- T *address (void) { return m_vecdata; }
- const T *address (void) const { return m_vecdata; }
- T *begin () { return address (); }
- const T *begin () const { return address (); }
- T *end () { return address () + length (); }
- const T *end () const { return address () + length (); }
- const T &operator[] (unsigned) const;
- T &operator[] (unsigned);
- T &last (void);
- bool space (unsigned) const;
- bool iterate (unsigned, T *) const;
- bool iterate (unsigned, T **) const;
- vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
- void splice (const vec &);
- void splice (const vec *src);
- T *quick_push (const T &);
- T &pop (void);
- void truncate (unsigned);
- void quick_insert (unsigned, const T &);
- void ordered_remove (unsigned);
- void unordered_remove (unsigned);
- void block_remove (unsigned, unsigned);
- void qsort (int (*) (const void *, const void *));
- T *bsearch (const void *key, int (*compar)(const void *, const void *));
- unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
- bool contains (const T &search) const;
- static size_t embedded_size (unsigned);
- void embedded_init (unsigned, unsigned = 0, unsigned = 0);
- void quick_grow (unsigned len);
- void quick_grow_cleared (unsigned len);
- /* vec class can access our internal data and functions. */
- template <typename, typename, typename> friend struct vec;
- /* The allocator types also need access to our internals. */
- friend struct va_gc;
- friend struct va_gc_atomic;
- friend struct va_heap;
- /* FIXME - These fields should be private, but we need to cater to
- compilers that have stricter notions of PODness for types. */
- vec_prefix m_vecpfx;
- T m_vecdata[1];
- };
- /* Convenience wrapper functions to use when dealing with pointers to
- embedded vectors. Some functionality for these vectors must be
- provided via free functions for these reasons:
- 1- The pointer may be NULL (e.g., before initial allocation).
- 2- When the vector needs to grow, it must be reallocated, so
- the pointer will change its value.
- Because of limitations with the current GC machinery, all vectors
- in GC memory *must* be pointers. */
- /* If V contains no room for NELEMS elements, return false. Otherwise,
- return true. */
- template<typename T, typename A>
- inline bool
- vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
- {
- return v ? v->space (nelems) : nelems == 0;
- }
- /* If V is NULL, return 0. Otherwise, return V->length(). */
- template<typename T, typename A>
- inline unsigned
- vec_safe_length (const vec<T, A, vl_embed> *v)
- {
- return v ? v->length () : 0;
- }
- /* If V is NULL, return NULL. Otherwise, return V->address(). */
- template<typename T, typename A>
- inline T *
- vec_safe_address (vec<T, A, vl_embed> *v)
- {
- return v ? v->address () : NULL;
- }
- /* If V is NULL, return true. Otherwise, return V->is_empty(). */
- template<typename T, typename A>
- inline bool
- vec_safe_is_empty (vec<T, A, vl_embed> *v)
- {
- return v ? v->is_empty () : true;
- }
- /* If V does not have space for NELEMS elements, call
- V->reserve(NELEMS, EXACT). */
- template<typename T, typename A>
- inline bool
- vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
- CXX_MEM_STAT_INFO)
- {
- bool extend = nelems ? !vec_safe_space (v, nelems) : false;
- if (extend)
- A::reserve (v, nelems, exact PASS_MEM_STAT);
- return extend;
- }
- template<typename T, typename A>
- inline bool
- vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
- CXX_MEM_STAT_INFO)
- {
- return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
- }
- /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
- is 0, V is initialized to NULL. */
- template<typename T, typename A>
- inline void
- vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
- {
- v = NULL;
- vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
- }
- /* Free the GC memory allocated by vector V and set it to NULL. */
- template<typename T, typename A>
- inline void
- vec_free (vec<T, A, vl_embed> *&v)
- {
- A::release (v);
- }
- /* Grow V to length LEN. Allocate it, if necessary. */
- template<typename T, typename A>
- inline void
- vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
- {
- unsigned oldlen = vec_safe_length (v);
- gcc_checking_assert (len >= oldlen);
- vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
- v->quick_grow (len);
- }
- /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
- template<typename T, typename A>
- inline void
- vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
- {
- unsigned oldlen = vec_safe_length (v);
- vec_safe_grow (v, len PASS_MEM_STAT);
- vec_default_construct (v->address () + oldlen, len - oldlen);
- }
- /* Assume V is not NULL. */
- template<typename T>
- inline void
- vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
- unsigned len CXX_MEM_STAT_INFO)
- {
- v->safe_grow_cleared (len PASS_MEM_STAT);
- }
- /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
- template<typename T, typename A>
- inline bool
- vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
- {
- if (v)
- return v->iterate (ix, ptr);
- else
- {
- *ptr = 0;
- return false;
- }
- }
- template<typename T, typename A>
- inline bool
- vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
- {
- if (v)
- return v->iterate (ix, ptr);
- else
- {
- *ptr = 0;
- return false;
- }
- }
- /* If V has no room for one more element, reallocate it. Then call
- V->quick_push(OBJ). */
- template<typename T, typename A>
- inline T *
- vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
- {
- vec_safe_reserve (v, 1, false PASS_MEM_STAT);
- return v->quick_push (obj);
- }
- /* if V has no room for one more element, reallocate it. Then call
- V->quick_insert(IX, OBJ). */
- template<typename T, typename A>
- inline void
- vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
- CXX_MEM_STAT_INFO)
- {
- vec_safe_reserve (v, 1, false PASS_MEM_STAT);
- v->quick_insert (ix, obj);
- }
- /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
- template<typename T, typename A>
- inline void
- vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
- {
- if (v)
- v->truncate (size);
- }
- /* If SRC is not NULL, return a pointer to a copy of it. */
- template<typename T, typename A>
- inline vec<T, A, vl_embed> *
- vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
- {
- return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
- }
- /* Copy the elements from SRC to the end of DST as if by memcpy.
- Reallocate DST, if necessary. */
- template<typename T, typename A>
- inline void
- vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
- CXX_MEM_STAT_INFO)
- {
- unsigned src_len = vec_safe_length (src);
- if (src_len)
- {
- vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
- PASS_MEM_STAT);
- dst->splice (*src);
- }
- }
- /* Return true if SEARCH is an element of V. Note that this is O(N) in the
- size of the vector and so should be used with care. */
- template<typename T, typename A>
- inline bool
- vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
- {
- return v ? v->contains (search) : false;
- }
- /* Index into vector. Return the IX'th element. IX must be in the
- domain of the vector. */
- template<typename T, typename A>
- inline const T &
- vec<T, A, vl_embed>::operator[] (unsigned ix) const
- {
- gcc_checking_assert (ix < m_vecpfx.m_num);
- return m_vecdata[ix];
- }
- template<typename T, typename A>
- inline T &
- vec<T, A, vl_embed>::operator[] (unsigned ix)
- {
- gcc_checking_assert (ix < m_vecpfx.m_num);
- return m_vecdata[ix];
- }
- /* Get the final element of the vector, which must not be empty. */
- template<typename T, typename A>
- inline T &
- vec<T, A, vl_embed>::last (void)
- {
- gcc_checking_assert (m_vecpfx.m_num > 0);
- return (*this)[m_vecpfx.m_num - 1];
- }
- /* If this vector has space for NELEMS additional entries, return
- true. You usually only need to use this if you are doing your
- own vector reallocation, for instance on an embedded vector. This
- returns true in exactly the same circumstances that vec::reserve
- will. */
- template<typename T, typename A>
- inline bool
- vec<T, A, vl_embed>::space (unsigned nelems) const
- {
- return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
- }
- /* Return iteration condition and update PTR to point to the IX'th
- element of this vector. Use this to iterate over the elements of a
- vector as follows,
- for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
- continue; */
- template<typename T, typename A>
- inline bool
- vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
- {
- if (ix < m_vecpfx.m_num)
- {
- *ptr = m_vecdata[ix];
- return true;
- }
- else
- {
- *ptr = 0;
- return false;
- }
- }
- /* Return iteration condition and update *PTR to point to the
- IX'th element of this vector. Use this to iterate over the
- elements of a vector as follows,
- for (ix = 0; v->iterate (ix, &ptr); ix++)
- continue;
- This variant is for vectors of objects. */
- template<typename T, typename A>
- inline bool
- vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
- {
- if (ix < m_vecpfx.m_num)
- {
- *ptr = CONST_CAST (T *, &m_vecdata[ix]);
- return true;
- }
- else
- {
- *ptr = 0;
- return false;
- }
- }
- /* Return a pointer to a copy of this vector. */
- template<typename T, typename A>
- inline vec<T, A, vl_embed> *
- vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
- {
- vec<T, A, vl_embed> *new_vec = NULL;
- unsigned len = length ();
- if (len)
- {
- vec_alloc (new_vec, len PASS_MEM_STAT);
- new_vec->embedded_init (len, len);
- vec_copy_construct (new_vec->address (), m_vecdata, len);
- }
- return new_vec;
- }
- /* Copy the elements from SRC to the end of this vector as if by memcpy.
- The vector must have sufficient headroom available. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
- {
- unsigned len = src.length ();
- if (len)
- {
- gcc_checking_assert (space (len));
- vec_copy_construct (end (), src.address (), len);
- m_vecpfx.m_num += len;
- }
- }
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
- {
- if (src)
- splice (*src);
- }
- /* Push OBJ (a new element) onto the end of the vector. There must be
- sufficient space in the vector. Return a pointer to the slot
- where OBJ was inserted. */
- template<typename T, typename A>
- inline T *
- vec<T, A, vl_embed>::quick_push (const T &obj)
- {
- gcc_checking_assert (space (1));
- T *slot = &m_vecdata[m_vecpfx.m_num++];
- *slot = obj;
- return slot;
- }
- /* Pop and return the last element off the end of the vector. */
- template<typename T, typename A>
- inline T &
- vec<T, A, vl_embed>::pop (void)
- {
- gcc_checking_assert (length () > 0);
- return m_vecdata[--m_vecpfx.m_num];
- }
- /* Set the length of the vector to SIZE. The new length must be less
- than or equal to the current length. This is an O(1) operation. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::truncate (unsigned size)
- {
- gcc_checking_assert (length () >= size);
- m_vecpfx.m_num = size;
- }
- /* Insert an element, OBJ, at the IXth position of this vector. There
- must be sufficient space. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
- {
- gcc_checking_assert (length () < allocated ());
- gcc_checking_assert (ix <= length ());
- T *slot = &m_vecdata[ix];
- memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
- *slot = obj;
- }
- /* Remove an element from the IXth position of this vector. Ordering of
- remaining elements is preserved. This is an O(N) operation due to
- memmove. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::ordered_remove (unsigned ix)
- {
- gcc_checking_assert (ix < length ());
- T *slot = &m_vecdata[ix];
- memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
- }
- /* Remove elements in [START, END) from VEC for which COND holds. Ordering of
- remaining elements is preserved. This is an O(N) operation. */
- #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \
- elem_ptr, start, end, cond) \
- { \
- gcc_assert ((end) <= (vec).length ()); \
- for (read_index = write_index = (start); read_index < (end); \
- ++read_index) \
- { \
- elem_ptr = &(vec)[read_index]; \
- bool remove_p = (cond); \
- if (remove_p) \
- continue; \
- \
- if (read_index != write_index) \
- (vec)[write_index] = (vec)[read_index]; \
- \
- write_index++; \
- } \
- \
- if (read_index - write_index > 0) \
- (vec).block_remove (write_index, read_index - write_index); \
- }
- /* Remove elements from VEC for which COND holds. Ordering of remaining
- elements is preserved. This is an O(N) operation. */
- #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \
- cond) \
- VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \
- elem_ptr, 0, (vec).length (), (cond))
- /* Remove an element from the IXth position of this vector. Ordering of
- remaining elements is destroyed. This is an O(1) operation. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::unordered_remove (unsigned ix)
- {
- gcc_checking_assert (ix < length ());
- m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
- }
- /* Remove LEN elements starting at the IXth. Ordering is retained.
- This is an O(N) operation due to memmove. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
- {
- gcc_checking_assert (ix + len <= length ());
- T *slot = &m_vecdata[ix];
- m_vecpfx.m_num -= len;
- memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
- }
- /* Sort the contents of this vector with qsort. CMP is the comparison
- function to pass to qsort. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
- {
- if (length () > 1)
- ::qsort (address (), length (), sizeof (T), cmp);
- }
- /* Search the contents of the sorted vector with a binary search.
- CMP is the comparison function to pass to bsearch. */
- template<typename T, typename A>
- inline T *
- vec<T, A, vl_embed>::bsearch (const void *key,
- int (*compar) (const void *, const void *))
- {
- const void *base = this->address ();
- size_t nmemb = this->length ();
- size_t size = sizeof (T);
- /* The following is a copy of glibc stdlib-bsearch.h. */
- size_t l, u, idx;
- const void *p;
- int comparison;
- l = 0;
- u = nmemb;
- while (l < u)
- {
- idx = (l + u) / 2;
- p = (const void *) (((const char *) base) + (idx * size));
- comparison = (*compar) (key, p);
- if (comparison < 0)
- u = idx;
- else if (comparison > 0)
- l = idx + 1;
- else
- return (T *)const_cast<void *>(p);
- }
- return NULL;
- }
- /* Return true if SEARCH is an element of V. Note that this is O(N) in the
- size of the vector and so should be used with care. */
- template<typename T, typename A>
- inline bool
- vec<T, A, vl_embed>::contains (const T &search) const
- {
- unsigned int len = length ();
- for (unsigned int i = 0; i < len; i++)
- if ((*this)[i] == search)
- return true;
- return false;
- }
- /* Find and return the first position in which OBJ could be inserted
- without changing the ordering of this vector. LESSTHAN is a
- function that returns true if the first argument is strictly less
- than the second. */
- template<typename T, typename A>
- unsigned
- vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
- const
- {
- unsigned int len = length ();
- unsigned int half, middle;
- unsigned int first = 0;
- while (len > 0)
- {
- half = len / 2;
- middle = first;
- middle += half;
- T middle_elem = (*this)[middle];
- if (lessthan (middle_elem, obj))
- {
- first = middle;
- ++first;
- len = len - half - 1;
- }
- else
- len = half;
- }
- return first;
- }
- /* Return the number of bytes needed to embed an instance of an
- embeddable vec inside another data structure.
- Use these methods to determine the required size and initialization
- of a vector V of type T embedded within another structure (as the
- final member):
- size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
- void v->embedded_init (unsigned alloc, unsigned num);
- These allow the caller to perform the memory allocation. */
- template<typename T, typename A>
- inline size_t
- vec<T, A, vl_embed>::embedded_size (unsigned alloc)
- {
- typedef vec<T, A, vl_embed> vec_embedded;
- return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
- }
- /* Initialize the vector to contain room for ALLOC elements and
- NUM active elements. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
- {
- m_vecpfx.m_alloc = alloc;
- m_vecpfx.m_using_auto_storage = aut;
- m_vecpfx.m_num = num;
- }
- /* Grow the vector to a specific length. LEN must be as long or longer than
- the current length. The new elements are uninitialized. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::quick_grow (unsigned len)
- {
- gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
- m_vecpfx.m_num = len;
- }
- /* Grow the vector to a specific length. LEN must be as long or longer than
- the current length. The new elements are initialized to zero. */
- template<typename T, typename A>
- inline void
- vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
- {
- unsigned oldlen = length ();
- size_t growby = len - oldlen;
- quick_grow (len);
- if (growby != 0)
- vec_default_construct (address () + oldlen, growby);
- }
- /* Garbage collection support for vec<T, A, vl_embed>. */
- template<typename T>
- void
- gt_ggc_mx (vec<T, va_gc> *v)
- {
- extern void gt_ggc_mx (T &);
- for (unsigned i = 0; i < v->length (); i++)
- gt_ggc_mx ((*v)[i]);
- }
- template<typename T>
- void
- gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
- {
- /* Nothing to do. Vectors of atomic types wrt GC do not need to
- be traversed. */
- }
- /* PCH support for vec<T, A, vl_embed>. */
- template<typename T, typename A>
- void
- gt_pch_nx (vec<T, A, vl_embed> *v)
- {
- extern void gt_pch_nx (T &);
- for (unsigned i = 0; i < v->length (); i++)
- gt_pch_nx ((*v)[i]);
- }
- template<typename T, typename A>
- void
- gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
- {
- for (unsigned i = 0; i < v->length (); i++)
- op (&((*v)[i]), cookie);
- }
- template<typename T, typename A>
- void
- gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
- {
- extern void gt_pch_nx (T *, gt_pointer_operator, void *);
- for (unsigned i = 0; i < v->length (); i++)
- gt_pch_nx (&((*v)[i]), op, cookie);
- }
- /* Space efficient vector. These vectors can grow dynamically and are
- allocated together with their control data. They are suited to be
- included in data structures. Prior to initial allocation, they
- only take a single word of storage.
- These vectors are implemented as a pointer to an embeddable vector.
- The semantics allow for this pointer to be NULL to represent empty
- vectors. This way, empty vectors occupy minimal space in the
- structure containing them.
- Properties:
- - The whole vector and control data are allocated in a single
- contiguous block.
- - The whole vector may be re-allocated.
- - Vector data may grow and shrink.
- - Access and manipulation requires a pointer test and
- indirection.
- - It requires 1 word of storage (prior to vector allocation).
- Limitations:
- These vectors must be PODs because they are stored in unions.
- (http://en.wikipedia.org/wiki/Plain_old_data_structures).
- As long as we use C++03, we cannot have constructors nor
- destructors in classes that are stored in unions. */
- template<typename T>
- struct vec<T, va_heap, vl_ptr>
- {
- public:
- /* Memory allocation and deallocation for the embedded vector.
- Needed because we cannot have proper ctors/dtors defined. */
- void create (unsigned nelems CXX_MEM_STAT_INFO);
- void release (void);
- /* Vector operations. */
- bool exists (void) const
- { return m_vec != NULL; }
- bool is_empty (void) const
- { return m_vec ? m_vec->is_empty () : true; }
- unsigned length (void) const
- { return m_vec ? m_vec->length () : 0; }
- T *address (void)
- { return m_vec ? m_vec->m_vecdata : NULL; }
- const T *address (void) const
- { return m_vec ? m_vec->m_vecdata : NULL; }
- T *begin () { return address (); }
- const T *begin () const { return address (); }
- T *end () { return begin () + length (); }
- const T *end () const { return begin () + length (); }
- const T &operator[] (unsigned ix) const
- { return (*m_vec)[ix]; }
- bool operator!=(const vec &other) const
- { return !(*this == other); }
- bool operator==(const vec &other) const
- { return address () == other.address (); }
- T &operator[] (unsigned ix)
- { return (*m_vec)[ix]; }
- T &last (void)
- { return m_vec->last (); }
- bool space (int nelems) const
- { return m_vec ? m_vec->space (nelems) : nelems == 0; }
- bool iterate (unsigned ix, T *p) const;
- bool iterate (unsigned ix, T **p) const;
- vec copy (ALONE_CXX_MEM_STAT_INFO) const;
- bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
- bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
- void splice (const vec &);
- void safe_splice (const vec & CXX_MEM_STAT_INFO);
- T *quick_push (const T &);
- T *safe_push (const T &CXX_MEM_STAT_INFO);
- T &pop (void);
- void truncate (unsigned);
- void safe_grow (unsigned CXX_MEM_STAT_INFO);
- void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
- void quick_grow (unsigned);
- void quick_grow_cleared (unsigned);
- void quick_insert (unsigned, const T &);
- void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
- void ordered_remove (unsigned);
- void unordered_remove (unsigned);
- void block_remove (unsigned, unsigned);
- void qsort (int (*) (const void *, const void *));
- T *bsearch (const void *key, int (*compar)(const void *, const void *));
- unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
- bool contains (const T &search) const;
- void reverse (void);
- bool using_auto_storage () const;
- /* FIXME - This field should be private, but we need to cater to
- compilers that have stricter notions of PODness for types. */
- vec<T, va_heap, vl_embed> *m_vec;
- };
- /* auto_vec is a subclass of vec that automatically manages creating and
- releasing the internal vector. If N is non zero then it has N elements of
- internal storage. The default is no internal storage, and you probably only
- want to ask for internal storage for vectors on the stack because if the
- size of the vector is larger than the internal storage that space is wasted.
- */
- template<typename T, size_t N = 0>
- class auto_vec : public vec<T, va_heap>
- {
- public:
- auto_vec ()
- {
- m_auto.embedded_init (MAX (N, 2), 0, 1);
- this->m_vec = &m_auto;
- }
- auto_vec (size_t s)
- {
- if (s > N)
- {
- this->create (s);
- return;
- }
- m_auto.embedded_init (MAX (N, 2), 0, 1);
- this->m_vec = &m_auto;
- }
- ~auto_vec ()
- {
- this->release ();
- }
- private:
- vec<T, va_heap, vl_embed> m_auto;
- T m_data[MAX (N - 1, 1)];
- };
- /* auto_vec is a sub class of vec whose storage is released when it is
- destroyed. */
- template<typename T>
- class auto_vec<T, 0> : public vec<T, va_heap>
- {
- public:
- auto_vec () { this->m_vec = NULL; }
- auto_vec (size_t n) { this->create (n); }
- ~auto_vec () { this->release (); }
- };
- /* Allocate heap memory for pointer V and create the internal vector
- with space for NELEMS elements. If NELEMS is 0, the internal
- vector is initialized to empty. */
- template<typename T>
- inline void
- vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
- {
- v = new vec<T>;
- v->create (nelems PASS_MEM_STAT);
- }
- /* A subclass of auto_vec <char *> that frees all of its elements on
- deletion. */
- class auto_string_vec : public auto_vec <char *>
- {
- public:
- ~auto_string_vec ();
- };
- /* Conditionally allocate heap memory for VEC and its internal vector. */
- template<typename T>
- inline void
- vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
- {
- if (!vec)
- vec_alloc (vec, nelems PASS_MEM_STAT);
- }
- /* Free the heap memory allocated by vector V and set it to NULL. */
- template<typename T>
- inline void
- vec_free (vec<T> *&v)
- {
- if (v == NULL)
- return;
- v->release ();
- delete v;
- v = NULL;
- }
- /* Return iteration condition and update PTR to point to the IX'th
- element of this vector. Use this to iterate over the elements of a
- vector as follows,
- for (ix = 0; v.iterate (ix, &ptr); ix++)
- continue; */
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
- {
- if (m_vec)
- return m_vec->iterate (ix, ptr);
- else
- {
- *ptr = 0;
- return false;
- }
- }
- /* Return iteration condition and update *PTR to point to the
- IX'th element of this vector. Use this to iterate over the
- elements of a vector as follows,
- for (ix = 0; v->iterate (ix, &ptr); ix++)
- continue;
- This variant is for vectors of objects. */
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
- {
- if (m_vec)
- return m_vec->iterate (ix, ptr);
- else
- {
- *ptr = 0;
- return false;
- }
- }
- /* Convenience macro for forward iteration. */
- #define FOR_EACH_VEC_ELT(V, I, P) \
- for (I = 0; (V).iterate ((I), &(P)); ++(I))
- #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
- for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
- /* Likewise, but start from FROM rather than 0. */
- #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
- for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
- /* Convenience macro for reverse iteration. */
- #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
- for (I = (V).length () - 1; \
- (V).iterate ((I), &(P)); \
- (I)--)
- #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
- for (I = vec_safe_length (V) - 1; \
- vec_safe_iterate ((V), (I), &(P)); \
- (I)--)
- /* auto_string_vec's dtor, freeing all contained strings, automatically
- chaining up to ~auto_vec <char *>, which frees the internal buffer. */
- inline
- auto_string_vec::~auto_string_vec ()
- {
- int i;
- char *str;
- FOR_EACH_VEC_ELT (*this, i, str)
- free (str);
- }
- /* Return a copy of this vector. */
- template<typename T>
- inline vec<T, va_heap, vl_ptr>
- vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
- {
- vec<T, va_heap, vl_ptr> new_vec = vNULL;
- if (length ())
- new_vec.m_vec = m_vec->copy ();
- return new_vec;
- }
- /* Ensure that the vector has at least RESERVE slots available (if
- EXACT is false), or exactly RESERVE slots available (if EXACT is
- true).
- This may create additional headroom if EXACT is false.
- Note that this can cause the embedded vector to be reallocated.
- Returns true iff reallocation actually occurred. */
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
- {
- if (space (nelems))
- return false;
- /* For now play a game with va_heap::reserve to hide our auto storage if any,
- this is necessary because it doesn't have enough information to know the
- embedded vector is in auto storage, and so should not be freed. */
- vec<T, va_heap, vl_embed> *oldvec = m_vec;
- unsigned int oldsize = 0;
- bool handle_auto_vec = m_vec && using_auto_storage ();
- if (handle_auto_vec)
- {
- m_vec = NULL;
- oldsize = oldvec->length ();
- nelems += oldsize;
- }
- va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
- if (handle_auto_vec)
- {
- vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
- m_vec->m_vecpfx.m_num = oldsize;
- }
- return true;
- }
- /* Ensure that this vector has exactly NELEMS slots available. This
- will not create additional headroom. Note this can cause the
- embedded vector to be reallocated. Returns true iff reallocation
- actually occurred. */
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
- {
- return reserve (nelems, true PASS_MEM_STAT);
- }
- /* Create the internal vector and reserve NELEMS for it. This is
- exactly like vec::reserve, but the internal vector is
- unconditionally allocated from scratch. The old one, if it
- existed, is lost. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
- {
- m_vec = NULL;
- if (nelems > 0)
- reserve_exact (nelems PASS_MEM_STAT);
- }
- /* Free the memory occupied by the embedded vector. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::release (void)
- {
- if (!m_vec)
- return;
- if (using_auto_storage ())
- {
- m_vec->m_vecpfx.m_num = 0;
- return;
- }
- va_heap::release (m_vec);
- }
- /* Copy the elements from SRC to the end of this vector as if by memcpy.
- SRC and this vector must be allocated with the same memory
- allocation mechanism. This vector is assumed to have sufficient
- headroom available. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
- {
- if (src.length ())
- m_vec->splice (*(src.m_vec));
- }
- /* Copy the elements in SRC to the end of this vector as if by memcpy.
- SRC and this vector must be allocated with the same mechanism.
- If there is not enough headroom in this vector, it will be reallocated
- as needed. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
- MEM_STAT_DECL)
- {
- if (src.length ())
- {
- reserve_exact (src.length ());
- splice (src);
- }
- }
- /* Push OBJ (a new element) onto the end of the vector. There must be
- sufficient space in the vector. Return a pointer to the slot
- where OBJ was inserted. */
- template<typename T>
- inline T *
- vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
- {
- return m_vec->quick_push (obj);
- }
- /* Push a new element OBJ onto the end of this vector. Reallocates
- the embedded vector, if needed. Return a pointer to the slot where
- OBJ was inserted. */
- template<typename T>
- inline T *
- vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
- {
- reserve (1, false PASS_MEM_STAT);
- return quick_push (obj);
- }
- /* Pop and return the last element off the end of the vector. */
- template<typename T>
- inline T &
- vec<T, va_heap, vl_ptr>::pop (void)
- {
- return m_vec->pop ();
- }
- /* Set the length of the vector to LEN. The new length must be less
- than or equal to the current length. This is an O(1) operation. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::truncate (unsigned size)
- {
- if (m_vec)
- m_vec->truncate (size);
- else
- gcc_checking_assert (size == 0);
- }
- /* Grow the vector to a specific length. LEN must be as long or
- longer than the current length. The new elements are
- uninitialized. Reallocate the internal vector, if needed. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
- {
- unsigned oldlen = length ();
- gcc_checking_assert (oldlen <= len);
- reserve_exact (len - oldlen PASS_MEM_STAT);
- if (m_vec)
- m_vec->quick_grow (len);
- else
- gcc_checking_assert (len == 0);
- }
- /* Grow the embedded vector to a specific length. LEN must be as
- long or longer than the current length. The new elements are
- initialized to zero. Reallocate the internal vector, if needed. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
- {
- unsigned oldlen = length ();
- size_t growby = len - oldlen;
- safe_grow (len PASS_MEM_STAT);
- if (growby != 0)
- vec_default_construct (address () + oldlen, growby);
- }
- /* Same as vec::safe_grow but without reallocation of the internal vector.
- If the vector cannot be extended, a runtime assertion will be triggered. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
- {
- gcc_checking_assert (m_vec);
- m_vec->quick_grow (len);
- }
- /* Same as vec::quick_grow_cleared but without reallocation of the
- internal vector. If the vector cannot be extended, a runtime
- assertion will be triggered. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
- {
- gcc_checking_assert (m_vec);
- m_vec->quick_grow_cleared (len);
- }
- /* Insert an element, OBJ, at the IXth position of this vector. There
- must be sufficient space. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
- {
- m_vec->quick_insert (ix, obj);
- }
- /* Insert an element, OBJ, at the IXth position of the vector.
- Reallocate the embedded vector, if necessary. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
- {
- reserve (1, false PASS_MEM_STAT);
- quick_insert (ix, obj);
- }
- /* Remove an element from the IXth position of this vector. Ordering of
- remaining elements is preserved. This is an O(N) operation due to
- a memmove. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
- {
- m_vec->ordered_remove (ix);
- }
- /* Remove an element from the IXth position of this vector. Ordering
- of remaining elements is destroyed. This is an O(1) operation. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
- {
- m_vec->unordered_remove (ix);
- }
- /* Remove LEN elements starting at the IXth. Ordering is retained.
- This is an O(N) operation due to memmove. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
- {
- m_vec->block_remove (ix, len);
- }
- /* Sort the contents of this vector with qsort. CMP is the comparison
- function to pass to qsort. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
- {
- if (m_vec)
- m_vec->qsort (cmp);
- }
- /* Search the contents of the sorted vector with a binary search.
- CMP is the comparison function to pass to bsearch. */
- template<typename T>
- inline T *
- vec<T, va_heap, vl_ptr>::bsearch (const void *key,
- int (*cmp) (const void *, const void *))
- {
- if (m_vec)
- return m_vec->bsearch (key, cmp);
- return NULL;
- }
- /* Find and return the first position in which OBJ could be inserted
- without changing the ordering of this vector. LESSTHAN is a
- function that returns true if the first argument is strictly less
- than the second. */
- template<typename T>
- inline unsigned
- vec<T, va_heap, vl_ptr>::lower_bound (T obj,
- bool (*lessthan)(const T &, const T &))
- const
- {
- return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
- }
- /* Return true if SEARCH is an element of V. Note that this is O(N) in the
- size of the vector and so should be used with care. */
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::contains (const T &search) const
- {
- return m_vec ? m_vec->contains (search) : false;
- }
- /* Reverse content of the vector. */
- template<typename T>
- inline void
- vec<T, va_heap, vl_ptr>::reverse (void)
- {
- unsigned l = length ();
- T *ptr = address ();
- for (unsigned i = 0; i < l / 2; i++)
- std::swap (ptr[i], ptr[l - i - 1]);
- }
- template<typename T>
- inline bool
- vec<T, va_heap, vl_ptr>::using_auto_storage () const
- {
- return m_vec->m_vecpfx.m_using_auto_storage;
- }
- /* Release VEC and call release of all element vectors. */
- template<typename T>
- inline void
- release_vec_vec (vec<vec<T> > &vec)
- {
- for (unsigned i = 0; i < vec.length (); i++)
- vec[i].release ();
- vec.release ();
- }
- #if (GCC_VERSION >= 3000)
- # pragma GCC poison m_vec m_vecpfx m_vecdata
- #endif
- #endif // GCC_VEC_H
|