123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909 |
- /* Copyright (C) 1997-2020 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <https://www.gnu.org/licenses/>. */
- /*
- * ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
- */
- #ifndef _TGMATH_H
- #define _TGMATH_H 1
- #define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION
- #include <bits/libc-header-start.h>
- /* Include the needed headers. */
- #include <bits/floatn.h>
- #include <math.h>
- #include <complex.h>
- /* There are two variant implementations of type-generic macros in
- this file: one for GCC 8 and later, using __builtin_tgmath and
- where each macro expands each of its arguments only once, and one
- for older GCC, using other compiler extensions but with macros
- expanding their arguments many times (so resulting in exponential
- blowup of the size of expansions when calls to such macros are
- nested inside arguments to such macros). */
- #define __HAVE_BUILTIN_TGMATH __GNUC_PREREQ (8, 0)
- #if __GNUC_PREREQ (2, 7)
- /* Certain cases of narrowing macros only need to call a single
- function so cannot use __builtin_tgmath and do not need any
- complicated logic. */
- # if __HAVE_FLOAT128X
- # error "Unsupported _Float128x type for <tgmath.h>."
- # endif
- # if ((__HAVE_FLOAT64X && !__HAVE_FLOAT128) \
- || (__HAVE_FLOAT128 && !__HAVE_FLOAT64X))
- # error "Unsupported combination of types for <tgmath.h>."
- # endif
- # define __TGMATH_2_NARROW_D(F, X, Y) \
- (F ## l (X, Y))
- # define __TGMATH_2_NARROW_F64X(F, X, Y) \
- (F ## f128 (X, Y))
- # if !__HAVE_FLOAT128
- # define __TGMATH_2_NARROW_F32X(F, X, Y) \
- (F ## f64 (X, Y))
- # endif
- # if __HAVE_BUILTIN_TGMATH
- # if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT)
- # define __TG_F16_ARG(X) X ## f16,
- # else
- # define __TG_F16_ARG(X)
- # endif
- # if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT)
- # define __TG_F32_ARG(X) X ## f32,
- # else
- # define __TG_F32_ARG(X)
- # endif
- # if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT)
- # define __TG_F64_ARG(X) X ## f64,
- # else
- # define __TG_F64_ARG(X)
- # endif
- # if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
- # define __TG_F128_ARG(X) X ## f128,
- # else
- # define __TG_F128_ARG(X)
- # endif
- # if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT)
- # define __TG_F32X_ARG(X) X ## f32x,
- # else
- # define __TG_F32X_ARG(X)
- # endif
- # if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT)
- # define __TG_F64X_ARG(X) X ## f64x,
- # else
- # define __TG_F64X_ARG(X)
- # endif
- # if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT)
- # define __TG_F128X_ARG(X) X ## f128x,
- # else
- # define __TG_F128X_ARG(X)
- # endif
- # define __TGMATH_FUNCS(X) X ## f, X, X ## l, \
- __TG_F16_ARG (X) __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \
- __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
- # define __TGMATH_RCFUNCS(F, C) __TGMATH_FUNCS (F) __TGMATH_FUNCS (C)
- # define __TGMATH_1(F, X) __builtin_tgmath (__TGMATH_FUNCS (F) (X))
- # define __TGMATH_2(F, X, Y) __builtin_tgmath (__TGMATH_FUNCS (F) (X), (Y))
- # define __TGMATH_2STD(F, X, Y) __builtin_tgmath (F ## f, F, F ## l, (X), (Y))
- # define __TGMATH_3(F, X, Y, Z) __builtin_tgmath (__TGMATH_FUNCS (F) \
- (X), (Y), (Z))
- # define __TGMATH_1C(F, C, X) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) (X))
- # define __TGMATH_2C(F, C, X, Y) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) \
- (X), (Y))
- # define __TGMATH_NARROW_FUNCS_F(X) X, X ## l,
- # define __TGMATH_NARROW_FUNCS_F16(X) \
- __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \
- __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
- # define __TGMATH_NARROW_FUNCS_F32(X) \
- __TG_F64_ARG (X) __TG_F128_ARG (X) \
- __TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
- # define __TGMATH_NARROW_FUNCS_F64(X) \
- __TG_F128_ARG (X) \
- __TG_F64X_ARG (X) __TG_F128X_ARG (X)
- # define __TGMATH_NARROW_FUNCS_F32X(X) \
- __TG_F64X_ARG (X) __TG_F128X_ARG (X) \
- __TG_F64_ARG (X) __TG_F128_ARG (X)
- # define __TGMATH_2_NARROW_F(F, X, Y) \
- __builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X), (Y))
- # define __TGMATH_2_NARROW_F16(F, X, Y) \
- __builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X), (Y))
- # define __TGMATH_2_NARROW_F32(F, X, Y) \
- __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X), (Y))
- # define __TGMATH_2_NARROW_F64(F, X, Y) \
- __builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y))
- # if __HAVE_FLOAT128
- # define __TGMATH_2_NARROW_F32X(F, X, Y) \
- __builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X), (Y))
- # endif
- # else /* !__HAVE_BUILTIN_TGMATH. */
- # ifdef __NO_LONG_DOUBLE_MATH
- # define __tgml(fct) fct
- # else
- # define __tgml(fct) fct ## l
- # endif
- /* __floating_type expands to 1 if TYPE is a floating type (including
- complex floating types), 0 if TYPE is an integer type (including
- complex integer types). __real_integer_type expands to 1 if TYPE
- is a real integer type. __complex_integer_type expands to 1 if
- TYPE is a complex integer type. All these macros expand to integer
- constant expressions. All these macros can assume their argument
- has an arithmetic type (not vector, decimal floating-point or
- fixed-point), valid to pass to tgmath.h macros. */
- # if __GNUC_PREREQ (3, 1)
- /* __builtin_classify_type expands to an integer constant expression
- in GCC 3.1 and later. Default conversions applied to the argument
- of __builtin_classify_type mean it always returns 1 for real
- integer types rather than ever returning different values for
- character, boolean or enumerated types. */
- # define __floating_type(type) \
- (__builtin_classify_type (__real__ ((type) 0)) == 8)
- # define __real_integer_type(type) \
- (__builtin_classify_type ((type) 0) == 1)
- # define __complex_integer_type(type) \
- (__builtin_classify_type ((type) 0) == 9 \
- && __builtin_classify_type (__real__ ((type) 0)) == 1)
- # else
- /* GCC versions predating __builtin_classify_type are also looser on
- what counts as an integer constant expression. */
- # define __floating_type(type) (((type) 1.25) != 1)
- # define __real_integer_type(type) (((type) (1.25 + _Complex_I)) == 1)
- # define __complex_integer_type(type) \
- (((type) (1.25 + _Complex_I)) == (1 + _Complex_I))
- # endif
- /* Whether an expression (of arithmetic type) has a real type. */
- # define __expr_is_real(E) (__builtin_classify_type (E) != 9)
- /* The tgmath real type for T, where E is 0 if T is an integer type
- and 1 for a floating type. If T has a complex type, it is
- unspecified whether the return type is real or complex (but it has
- the correct corresponding real type). */
- # define __tgmath_real_type_sub(T, E) \
- __typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
- : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
- /* The tgmath real type of EXPR. */
- # define __tgmath_real_type(expr) \
- __tgmath_real_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \
- __floating_type (__typeof__ (+(expr))))
- /* The tgmath complex type for T, where E1 is 1 if T has a floating
- type and 0 otherwise, E2 is 1 if T has a real integer type and 0
- otherwise, and E3 is 1 if T has a complex type and 0 otherwise. */
- # define __tgmath_complex_type_sub(T, E1, E2, E3) \
- __typeof__ (*(0 \
- ? (__typeof__ (0 ? (T *) 0 : (void *) (!(E1)))) 0 \
- : (__typeof__ (0 \
- ? (__typeof__ (0 \
- ? (double *) 0 \
- : (void *) (!(E2)))) 0 \
- : (__typeof__ (0 \
- ? (_Complex double *) 0 \
- : (void *) (!(E3)))) 0)) 0))
- /* The tgmath complex type of EXPR. */
- # define __tgmath_complex_type(expr) \
- __tgmath_complex_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \
- __floating_type (__typeof__ (+(expr))), \
- __real_integer_type (__typeof__ (+(expr))), \
- __complex_integer_type (__typeof__ (+(expr))))
- # if (__HAVE_DISTINCT_FLOAT16 \
- || __HAVE_DISTINCT_FLOAT32 \
- || __HAVE_DISTINCT_FLOAT64 \
- || __HAVE_DISTINCT_FLOAT32X \
- || __HAVE_DISTINCT_FLOAT64X \
- || __HAVE_DISTINCT_FLOAT128X)
- # error "Unsupported _FloatN or _FloatNx types for <tgmath.h>."
- # endif
- /* Expand to text that checks if ARG_COMB has type _Float128, and if
- so calls the appropriately suffixed FCT (which may include a cast),
- or FCT and CFCT for complex functions, with arguments ARG_CALL. */
- # if __HAVE_DISTINCT_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
- # if (!__HAVE_FLOAT64X \
- || __HAVE_FLOAT64X_LONG_DOUBLE \
- || !__HAVE_FLOATN_NOT_TYPEDEF)
- # define __TGMATH_F128(arg_comb, fct, arg_call) \
- __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
- ? fct ## f128 arg_call :
- # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \
- __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
- ? (__expr_is_real (arg_comb) \
- ? fct ## f128 arg_call \
- : cfct ## f128 arg_call) :
- # else
- /* _Float64x is a distinct type at the C language level, which must be
- handled like _Float128. */
- # define __TGMATH_F128(arg_comb, fct, arg_call) \
- (__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
- || __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float64x)) \
- ? fct ## f128 arg_call :
- # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \
- (__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
- || __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), \
- _Float64x)) \
- ? (__expr_is_real (arg_comb) \
- ? fct ## f128 arg_call \
- : cfct ## f128 arg_call) :
- # endif
- # else
- # define __TGMATH_F128(arg_comb, fct, arg_call) /* Nothing. */
- # define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing. */
- # endif
- # endif /* !__HAVE_BUILTIN_TGMATH. */
- /* We have two kinds of generic macros: to support functions which are
- only defined on real valued parameters and those which are defined
- for complex functions as well. */
- # if __HAVE_BUILTIN_TGMATH
- # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val))
- # define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val))
- # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
- __TGMATH_2 (Fct, (Val1), (Val2))
- # define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
- __TGMATH_2STD (Fct, (Val1), (Val2))
- # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
- __TGMATH_2 (Fct, (Val1), (Val2))
- # define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
- __TGMATH_2STD (Fct, (Val1), (Val2))
- # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
- __TGMATH_3 (Fct, (Val1), (Val2), (Val3))
- # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
- __TGMATH_3 (Fct, (Val1), (Val2), (Val3))
- # define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
- __TGMATH_3 (Fct, (Val1), (Val2), (Val3))
- # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
- __TGMATH_1C (Fct, Cfct, (Val))
- # define __TGMATH_UNARY_IMAG(Val, Cfct) __TGMATH_1 (Cfct, (Val))
- # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
- __TGMATH_1C (Fct, Cfct, (Val))
- # define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \
- __TGMATH_1 (Cfct, (Val))
- # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
- __TGMATH_2C (Fct, Cfct, (Val1), (Val2))
- # else /* !__HAVE_BUILTIN_TGMATH. */
- # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
- (__extension__ ((sizeof (+(Val)) == sizeof (double) \
- || __builtin_classify_type (Val) != 8) \
- ? (__tgmath_real_type (Val)) Fct (Val) \
- : (sizeof (+(Val)) == sizeof (float)) \
- ? (__tgmath_real_type (Val)) Fct##f (Val) \
- : __TGMATH_F128 ((Val), (__tgmath_real_type (Val)) Fct, \
- (Val)) \
- (__tgmath_real_type (Val)) __tgml(Fct) (Val)))
- # define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) \
- (__extension__ ((sizeof (+(Val)) == sizeof (double) \
- || __builtin_classify_type (Val) != 8) \
- ? Fct (Val) \
- : (sizeof (+(Val)) == sizeof (float)) \
- ? Fct##f (Val) \
- : __TGMATH_F128 ((Val), Fct, (Val)) \
- __tgml(Fct) (Val)))
- # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
- (__extension__ ((sizeof (+(Val1)) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8) \
- ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
- : (sizeof (+(Val1)) == sizeof (float)) \
- ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
- : __TGMATH_F128 ((Val1), (__tgmath_real_type (Val1)) Fct, \
- (Val1, Val2)) \
- (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
- # define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
- (__extension__ ((sizeof (+(Val1)) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8) \
- ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
- : (sizeof (+(Val1)) == sizeof (float)) \
- ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
- : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
- # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
- (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
- && __builtin_classify_type ((Val1) + (Val2)) == 8) \
- ? __TGMATH_F128 ((Val1) + (Val2), \
- (__typeof \
- ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) Fct, \
- (Val1, Val2)) \
- (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) \
- __tgml(Fct) (Val1, Val2) \
- : (sizeof (+(Val1)) == sizeof (double) \
- || sizeof (+(Val2)) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8 \
- || __builtin_classify_type (Val2) != 8) \
- ? (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) \
- Fct (Val1, Val2) \
- : (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) \
- Fct##f (Val1, Val2)))
- # define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
- (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
- && __builtin_classify_type ((Val1) + (Val2)) == 8) \
- ? (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) \
- __tgml(Fct) (Val1, Val2) \
- : (sizeof (+(Val1)) == sizeof (double) \
- || sizeof (+(Val2)) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8 \
- || __builtin_classify_type (Val2) != 8) \
- ? (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) \
- Fct (Val1, Val2) \
- : (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) \
- Fct##f (Val1, Val2)))
- # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
- (__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
- && __builtin_classify_type ((Val1) + (Val2)) == 8) \
- ? __TGMATH_F128 ((Val1) + (Val2), \
- (__typeof \
- ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) Fct, \
- (Val1, Val2, Val3)) \
- (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) \
- __tgml(Fct) (Val1, Val2, Val3) \
- : (sizeof (+(Val1)) == sizeof (double) \
- || sizeof (+(Val2)) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8 \
- || __builtin_classify_type (Val2) != 8) \
- ? (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) \
- Fct (Val1, Val2, Val3) \
- : (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0)) \
- Fct##f (Val1, Val2, Val3)))
- # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
- (__extension__ ((sizeof ((Val1) + (Val2) + (Val3)) > sizeof (double) \
- && __builtin_classify_type ((Val1) + (Val2) + (Val3)) \
- == 8) \
- ? __TGMATH_F128 ((Val1) + (Val2) + (Val3), \
- (__typeof \
- ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0 \
- + (__tgmath_real_type (Val3)) 0)) Fct, \
- (Val1, Val2, Val3)) \
- (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0 \
- + (__tgmath_real_type (Val3)) 0)) \
- __tgml(Fct) (Val1, Val2, Val3) \
- : (sizeof (+(Val1)) == sizeof (double) \
- || sizeof (+(Val2)) == sizeof (double) \
- || sizeof (+(Val3)) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8 \
- || __builtin_classify_type (Val2) != 8 \
- || __builtin_classify_type (Val3) != 8) \
- ? (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0 \
- + (__tgmath_real_type (Val3)) 0)) \
- Fct (Val1, Val2, Val3) \
- : (__typeof ((__tgmath_real_type (Val1)) 0 \
- + (__tgmath_real_type (Val2)) 0 \
- + (__tgmath_real_type (Val3)) 0)) \
- Fct##f (Val1, Val2, Val3)))
- # define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
- (__extension__ ((sizeof (+(Val1)) == sizeof (double) \
- || __builtin_classify_type (Val1) != 8) \
- ? Fct (Val1, Val2, Val3) \
- : (sizeof (+(Val1)) == sizeof (float)) \
- ? Fct##f (Val1, Val2, Val3) \
- : __TGMATH_F128 ((Val1), Fct, (Val1, Val2, Val3)) \
- __tgml(Fct) (Val1, Val2, Val3)))
- /* XXX This definition has to be changed as soon as the compiler understands
- the imaginary keyword. */
- # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
- (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
- || __builtin_classify_type (__real__ (Val)) != 8) \
- ? (__expr_is_real (Val) \
- ? (__tgmath_complex_type (Val)) Fct (Val) \
- : (__tgmath_complex_type (Val)) Cfct (Val)) \
- : (sizeof (+__real__ (Val)) == sizeof (float)) \
- ? (__expr_is_real (Val) \
- ? (__tgmath_complex_type (Val)) Fct##f (Val) \
- : (__tgmath_complex_type (Val)) Cfct##f (Val)) \
- : __TGMATH_CF128 ((Val), \
- (__tgmath_complex_type (Val)) Fct, \
- (__tgmath_complex_type (Val)) Cfct, \
- (Val)) \
- (__expr_is_real (Val) \
- ? (__tgmath_complex_type (Val)) __tgml(Fct) (Val) \
- : (__tgmath_complex_type (Val)) __tgml(Cfct) (Val))))
- # define __TGMATH_UNARY_IMAG(Val, Cfct) \
- (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
- || __builtin_classify_type (__real__ (Val)) != 8) \
- ? (__typeof__ ((__tgmath_real_type (Val)) 0 \
- + _Complex_I)) Cfct (Val) \
- : (sizeof (+__real__ (Val)) == sizeof (float)) \
- ? (__typeof__ ((__tgmath_real_type (Val)) 0 \
- + _Complex_I)) Cfct##f (Val) \
- : __TGMATH_F128 (__real__ (Val), \
- (__typeof__ \
- ((__tgmath_real_type (Val)) 0 \
- + _Complex_I)) Cfct, (Val)) \
- (__typeof__ ((__tgmath_real_type (Val)) 0 \
- + _Complex_I)) __tgml(Cfct) (Val)))
- /* XXX This definition has to be changed as soon as the compiler understands
- the imaginary keyword. */
- # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
- (__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
- || __builtin_classify_type (__real__ (Val)) != 8) \
- ? (__expr_is_real (Val) \
- ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
- Fct (Val) \
- : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
- Cfct (Val)) \
- : (sizeof (+__real__ (Val)) == sizeof (float)) \
- ? (__expr_is_real (Val) \
- ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
- Fct##f (Val) \
- : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
- Cfct##f (Val)) \
- : __TGMATH_CF128 ((Val), \
- (__typeof__ \
- (__real__ \
- (__tgmath_real_type (Val)) 0)) Fct, \
- (__typeof__ \
- (__real__ \
- (__tgmath_real_type (Val)) 0)) Cfct, \
- (Val)) \
- (__expr_is_real (Val) \
- ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \
- __tgml(Fct) (Val) \
- : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \
- __tgml(Cfct) (Val))))
- # define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \
- __TGMATH_UNARY_REAL_IMAG_RET_REAL ((Val), Cfct, Cfct)
- /* XXX This definition has to be changed as soon as the compiler understands
- the imaginary keyword. */
- # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
- (__extension__ ((sizeof (__real__ (Val1) \
- + __real__ (Val2)) > sizeof (double) \
- && __builtin_classify_type (__real__ (Val1) \
- + __real__ (Val2)) == 8) \
- ? __TGMATH_CF128 ((Val1) + (Val2), \
- (__typeof \
- ((__tgmath_complex_type (Val1)) 0 \
- + (__tgmath_complex_type (Val2)) 0)) \
- Fct, \
- (__typeof \
- ((__tgmath_complex_type (Val1)) 0 \
- + (__tgmath_complex_type (Val2)) 0)) \
- Cfct, \
- (Val1, Val2)) \
- (__expr_is_real ((Val1) + (Val2)) \
- ? (__typeof ((__tgmath_complex_type (Val1)) 0 \
- + (__tgmath_complex_type (Val2)) 0)) \
- __tgml(Fct) (Val1, Val2) \
- : (__typeof ((__tgmath_complex_type (Val1)) 0 \
- + (__tgmath_complex_type (Val2)) 0)) \
- __tgml(Cfct) (Val1, Val2)) \
- : (sizeof (+__real__ (Val1)) == sizeof (double) \
- || sizeof (+__real__ (Val2)) == sizeof (double) \
- || __builtin_classify_type (__real__ (Val1)) != 8 \
- || __builtin_classify_type (__real__ (Val2)) != 8) \
- ? (__expr_is_real ((Val1) + (Val2)) \
- ? (__typeof ((__tgmath_complex_type (Val1)) 0 \
- + (__tgmath_complex_type (Val2)) 0)) \
- Fct (Val1, Val2) \
- : (__typeof ((__tgmath_complex_type (Val1)) 0 \
- + (__tgmath_complex_type (Val2)) 0)) \
- Cfct (Val1, Val2)) \
- : (__expr_is_real ((Val1) + (Val2)) \
- ? (__typeof ((__tgmath_complex_type (Val1)) 0 \
- + (__tgmath_complex_type (Val2)) 0)) \
- Fct##f (Val1, Val2) \
- : (__typeof ((__tgmath_complex_type (Val1)) 0 \
- + (__tgmath_complex_type (Val2)) 0)) \
- Cfct##f (Val1, Val2))))
- # define __TGMATH_2_NARROW_F(F, X, Y) \
- (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
- + (__tgmath_real_type (Y)) 0) > sizeof (double) \
- ? F ## l (X, Y) \
- : F (X, Y)))
- /* In most cases, these narrowing macro definitions based on sizeof
- ensure that the function called has the right argument format, as
- for other <tgmath.h> macros for compilers before GCC 8, but may not
- have exactly the argument type (among the types with that format)
- specified in the standard logic.
- In the case of macros for _Float32x return type, when _Float64x
- exists, _Float64 arguments should result in the *f64 function being
- called while _Float32x arguments should result in the *f64x
- function being called. These cases cannot be distinguished using
- sizeof (or at all if the types are typedefs rather than different
- types). However, for these functions it is OK (does not affect the
- final result) to call a function with any argument format at least
- as wide as all the floating-point arguments, unless that affects
- rounding of integer arguments. Integer arguments are considered to
- have type _Float64, so the *f64 functions are preferred for f32x*
- macros when no argument has a wider floating-point type. */
- # if __HAVE_FLOAT64X_LONG_DOUBLE && __HAVE_DISTINCT_FLOAT128
- # define __TGMATH_2_NARROW_F32(F, X, Y) \
- (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
- + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
- ? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \
- F ## f64x (X, Y) \
- : F ## f64 (X, Y)))
- # define __TGMATH_2_NARROW_F64(F, X, Y) \
- (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
- + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
- ? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \
- F ## f64x (X, Y) \
- : F ## f128 (X, Y)))
- # define __TGMATH_2_NARROW_F32X(F, X, Y) \
- (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
- + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
- ? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \
- F ## f64x (X, Y) \
- : F ## f64 (X, Y)))
- # elif __HAVE_FLOAT128
- # define __TGMATH_2_NARROW_F32(F, X, Y) \
- (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
- + (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
- ? F ## f128 (X, Y) \
- : F ## f64 (X, Y)))
- # define __TGMATH_2_NARROW_F64(F, X, Y) \
- (F ## f128 (X, Y))
- # define __TGMATH_2_NARROW_F32X(F, X, Y) \
- (__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
- + (__tgmath_real_type (Y)) 0) > sizeof (_Float32x) \
- ? F ## f64x (X, Y) \
- : F ## f64 (X, Y)))
- # else
- # define __TGMATH_2_NARROW_F32(F, X, Y) \
- (F ## f64 (X, Y))
- # endif
- # endif /* !__HAVE_BUILTIN_TGMATH. */
- #else
- # error "Unsupported compiler; you cannot use <tgmath.h>"
- #endif
- /* Unary functions defined for real and complex values. */
- /* Trigonometric functions. */
- /* Arc cosine of X. */
- #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
- /* Arc sine of X. */
- #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
- /* Arc tangent of X. */
- #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
- /* Arc tangent of Y/X. */
- #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
- /* Cosine of X. */
- #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
- /* Sine of X. */
- #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
- /* Tangent of X. */
- #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
- /* Hyperbolic functions. */
- /* Hyperbolic arc cosine of X. */
- #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
- /* Hyperbolic arc sine of X. */
- #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
- /* Hyperbolic arc tangent of X. */
- #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
- /* Hyperbolic cosine of X. */
- #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
- /* Hyperbolic sine of X. */
- #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
- /* Hyperbolic tangent of X. */
- #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
- /* Exponential and logarithmic functions. */
- /* Exponential function of X. */
- #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
- /* Break VALUE into a normalized fraction and an integral power of 2. */
- #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
- /* X times (two to the EXP power). */
- #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
- /* Natural logarithm of X. */
- #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
- /* Base-ten logarithm of X. */
- #ifdef __USE_GNU
- # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, clog10)
- #else
- # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
- #endif
- /* Return exp(X) - 1. */
- #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
- /* Return log(1 + X). */
- #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
- /* Return the base 2 signed integral exponent of X. */
- #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
- /* Compute base-2 exponential of X. */
- #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
- /* Compute base-2 logarithm of X. */
- #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
- /* Power functions. */
- /* Return X to the Y power. */
- #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
- /* Return the square root of X. */
- #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
- /* Return `sqrt(X*X + Y*Y)'. */
- #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
- /* Return the cube root of X. */
- #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
- /* Nearest integer, absolute value, and remainder functions. */
- /* Smallest integral value not less than X. */
- #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
- /* Absolute value of X. */
- #define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
- /* Largest integer not greater than X. */
- #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
- /* Floating-point modulo remainder of X/Y. */
- #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
- /* Round X to integral valuein floating-point format using current
- rounding direction, but do not raise inexact exception. */
- #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
- /* Round X to nearest integral value, rounding halfway cases away from
- zero. */
- #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
- /* Round X to the integral value in floating-point format nearest but
- not larger in magnitude. */
- #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
- /* Compute remainder of X and Y and put in *QUO a value with sign of x/y
- and magnitude congruent `mod 2^n' to the magnitude of the integral
- quotient x/y, with n >= 3. */
- #define remquo(Val1, Val2, Val3) \
- __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
- /* Round X to nearest integral value according to current rounding
- direction. */
- #define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lrint)
- #define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llrint)
- /* Round X to nearest integral value, rounding halfway cases away from
- zero. */
- #define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lround)
- #define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llround)
- /* Return X with its signed changed to Y's. */
- #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
- /* Error and gamma functions. */
- #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
- #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
- #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
- #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
- /* Return the integer nearest X in the direction of the
- prevailing rounding mode. */
- #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
- #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X)
- /* Return X - epsilon. */
- # define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown)
- /* Return X + epsilon. */
- # define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup)
- #endif
- /* Return X + epsilon if X < Y, X - epsilon if X > Y. */
- #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
- #define nexttoward(Val1, Val2) \
- __TGMATH_BINARY_FIRST_REAL_STD_ONLY (Val1, Val2, nexttoward)
- /* Return the remainder of integer divison X / Y with infinite precision. */
- #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
- /* Return X times (2 to the Nth power). */
- #ifdef __USE_MISC
- # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, scalb)
- #endif
- /* Return X times (2 to the Nth power). */
- #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
- /* Return X times (2 to the Nth power). */
- #define scalbln(Val1, Val2) \
- __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
- /* Return the binary exponent of X, which must be nonzero. */
- #define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, ilogb)
- /* Return positive difference between X and Y. */
- #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
- /* Return maximum numeric value from X and Y. */
- #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
- /* Return minimum numeric value from X and Y. */
- #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
- /* Multiply-add function computed as a ternary operation. */
- #define fma(Val1, Val2, Val3) \
- __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
- #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X)
- /* Round X to nearest integer value, rounding halfway cases to even. */
- # define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven)
- # define fromfp(Val1, Val2, Val3) \
- __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfp)
- # define ufromfp(Val1, Val2, Val3) \
- __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfp)
- # define fromfpx(Val1, Val2, Val3) \
- __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfpx)
- # define ufromfpx(Val1, Val2, Val3) \
- __TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfpx)
- /* Like ilogb, but returning long int. */
- # define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llogb)
- /* Return value with maximum magnitude. */
- # define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag)
- /* Return value with minimum magnitude. */
- # define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag)
- #endif
- /* Absolute value, conjugates, and projection. */
- /* Argument value of Z. */
- #define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, carg)
- /* Complex conjugate of Z. */
- #define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)
- /* Projection of Z onto the Riemann sphere. */
- #define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)
- /* Decomposing complex values. */
- /* Imaginary part of Z. */
- #define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, cimag)
- /* Real part of Z. */
- #define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, creal)
- /* Narrowing functions. */
- #if __GLIBC_USE (IEC_60559_BFP_EXT_C2X)
- /* Add. */
- # define fadd(Val1, Val2) __TGMATH_2_NARROW_F (fadd, Val1, Val2)
- # define dadd(Val1, Val2) __TGMATH_2_NARROW_D (dadd, Val1, Val2)
- /* Divide. */
- # define fdiv(Val1, Val2) __TGMATH_2_NARROW_F (fdiv, Val1, Val2)
- # define ddiv(Val1, Val2) __TGMATH_2_NARROW_D (ddiv, Val1, Val2)
- /* Multiply. */
- # define fmul(Val1, Val2) __TGMATH_2_NARROW_F (fmul, Val1, Val2)
- # define dmul(Val1, Val2) __TGMATH_2_NARROW_D (dmul, Val1, Val2)
- /* Subtract. */
- # define fsub(Val1, Val2) __TGMATH_2_NARROW_F (fsub, Val1, Val2)
- # define dsub(Val1, Val2) __TGMATH_2_NARROW_D (dsub, Val1, Val2)
- #endif
- #if __GLIBC_USE (IEC_60559_TYPES_EXT)
- # if __HAVE_FLOAT16
- # define f16add(Val1, Val2) __TGMATH_2_NARROW_F16 (f16add, Val1, Val2)
- # define f16div(Val1, Val2) __TGMATH_2_NARROW_F16 (f16div, Val1, Val2)
- # define f16mul(Val1, Val2) __TGMATH_2_NARROW_F16 (f16mul, Val1, Val2)
- # define f16sub(Val1, Val2) __TGMATH_2_NARROW_F16 (f16sub, Val1, Val2)
- # endif
- # if __HAVE_FLOAT32
- # define f32add(Val1, Val2) __TGMATH_2_NARROW_F32 (f32add, Val1, Val2)
- # define f32div(Val1, Val2) __TGMATH_2_NARROW_F32 (f32div, Val1, Val2)
- # define f32mul(Val1, Val2) __TGMATH_2_NARROW_F32 (f32mul, Val1, Val2)
- # define f32sub(Val1, Val2) __TGMATH_2_NARROW_F32 (f32sub, Val1, Val2)
- # endif
- # if __HAVE_FLOAT64 && (__HAVE_FLOAT64X || __HAVE_FLOAT128)
- # define f64add(Val1, Val2) __TGMATH_2_NARROW_F64 (f64add, Val1, Val2)
- # define f64div(Val1, Val2) __TGMATH_2_NARROW_F64 (f64div, Val1, Val2)
- # define f64mul(Val1, Val2) __TGMATH_2_NARROW_F64 (f64mul, Val1, Val2)
- # define f64sub(Val1, Val2) __TGMATH_2_NARROW_F64 (f64sub, Val1, Val2)
- # endif
- # if __HAVE_FLOAT32X
- # define f32xadd(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xadd, Val1, Val2)
- # define f32xdiv(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xdiv, Val1, Val2)
- # define f32xmul(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xmul, Val1, Val2)
- # define f32xsub(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xsub, Val1, Val2)
- # endif
- # if __HAVE_FLOAT64X && (__HAVE_FLOAT128X || __HAVE_FLOAT128)
- # define f64xadd(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xadd, Val1, Val2)
- # define f64xdiv(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xdiv, Val1, Val2)
- # define f64xmul(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xmul, Val1, Val2)
- # define f64xsub(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xsub, Val1, Val2)
- # endif
- #endif
- #endif /* tgmath.h */
|