1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391 |
- // random number generation (out of line) -*- C++ -*-
- // Copyright (C) 2009-2022 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
- /** @file bits/random.tcc
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{random}
- */
- #ifndef _RANDOM_TCC
- #define _RANDOM_TCC 1
- #include <numeric> // std::accumulate and std::partial_sum
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
- /// @cond undocumented
- // (Further) implementation-space details.
- namespace __detail
- {
- // General case for x = (ax + c) mod m -- use Schrage's algorithm
- // to avoid integer overflow.
- //
- // Preconditions: a > 0, m > 0.
- //
- // Note: only works correctly for __m % __a < __m / __a.
- template<typename _Tp, _Tp __m, _Tp __a, _Tp __c>
- _Tp
- _Mod<_Tp, __m, __a, __c, false, true>::
- __calc(_Tp __x)
- {
- if (__a == 1)
- __x %= __m;
- else
- {
- static const _Tp __q = __m / __a;
- static const _Tp __r = __m % __a;
- _Tp __t1 = __a * (__x % __q);
- _Tp __t2 = __r * (__x / __q);
- if (__t1 >= __t2)
- __x = __t1 - __t2;
- else
- __x = __m - __t2 + __t1;
- }
- if (__c != 0)
- {
- const _Tp __d = __m - __x;
- if (__d > __c)
- __x += __c;
- else
- __x = __c - __d;
- }
- return __x;
- }
- template<typename _InputIterator, typename _OutputIterator,
- typename _Tp>
- _OutputIterator
- __normalize(_InputIterator __first, _InputIterator __last,
- _OutputIterator __result, const _Tp& __factor)
- {
- for (; __first != __last; ++__first, ++__result)
- *__result = *__first / __factor;
- return __result;
- }
- } // namespace __detail
- /// @endcond
- #if ! __cpp_inline_variables
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- constexpr _UIntType
- linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier;
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- constexpr _UIntType
- linear_congruential_engine<_UIntType, __a, __c, __m>::increment;
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- constexpr _UIntType
- linear_congruential_engine<_UIntType, __a, __c, __m>::modulus;
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- constexpr _UIntType
- linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed;
- #endif
- /**
- * Seeds the LCR with integral value @p __s, adjusted so that the
- * ring identity is never a member of the convergence set.
- */
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- void
- linear_congruential_engine<_UIntType, __a, __c, __m>::
- seed(result_type __s)
- {
- if ((__detail::__mod<_UIntType, __m>(__c) == 0)
- && (__detail::__mod<_UIntType, __m>(__s) == 0))
- _M_x = 1;
- else
- _M_x = __detail::__mod<_UIntType, __m>(__s);
- }
- /**
- * Seeds the LCR engine with a value generated by @p __q.
- */
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- template<typename _Sseq>
- auto
- linear_congruential_engine<_UIntType, __a, __c, __m>::
- seed(_Sseq& __q)
- -> _If_seed_seq<_Sseq>
- {
- const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits
- : std::__lg(__m);
- const _UIntType __k = (__k0 + 31) / 32;
- uint_least32_t __arr[__k + 3];
- __q.generate(__arr + 0, __arr + __k + 3);
- _UIntType __factor = 1u;
- _UIntType __sum = 0u;
- for (size_t __j = 0; __j < __k; ++__j)
- {
- __sum += __arr[__j + 3] * __factor;
- __factor *= __detail::_Shift<_UIntType, 32>::__value;
- }
- seed(__sum);
- }
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const linear_congruential_engine<_UIntType,
- __a, __c, __m>& __lcr)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
- __os.fill(__os.widen(' '));
- __os << __lcr._M_x;
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr)
- {
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec);
- __is >> __lcr._M_x;
- __is.flags(__flags);
- return __is;
- }
- #if ! __cpp_inline_variables
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr size_t
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::word_size;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr size_t
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::state_size;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr size_t
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::shift_size;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr size_t
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::mask_bits;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr _UIntType
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::xor_mask;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr size_t
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::tempering_u;
-
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr _UIntType
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::tempering_d;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr size_t
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::tempering_s;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr _UIntType
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::tempering_b;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr size_t
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::tempering_t;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr _UIntType
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::tempering_c;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr size_t
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::tempering_l;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr _UIntType
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::
- initialization_multiplier;
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- constexpr _UIntType
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::default_seed;
- #endif
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- void
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::
- seed(result_type __sd)
- {
- _M_x[0] = __detail::__mod<_UIntType,
- __detail::_Shift<_UIntType, __w>::__value>(__sd);
- for (size_t __i = 1; __i < state_size; ++__i)
- {
- _UIntType __x = _M_x[__i - 1];
- __x ^= __x >> (__w - 2);
- __x *= __f;
- __x += __detail::__mod<_UIntType, __n>(__i);
- _M_x[__i] = __detail::__mod<_UIntType,
- __detail::_Shift<_UIntType, __w>::__value>(__x);
- }
- _M_p = state_size;
- }
- template<typename _UIntType,
- size_t __w, size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- template<typename _Sseq>
- auto
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::
- seed(_Sseq& __q)
- -> _If_seed_seq<_Sseq>
- {
- const _UIntType __upper_mask = (~_UIntType()) << __r;
- const size_t __k = (__w + 31) / 32;
- uint_least32_t __arr[__n * __k];
- __q.generate(__arr + 0, __arr + __n * __k);
- bool __zero = true;
- for (size_t __i = 0; __i < state_size; ++__i)
- {
- _UIntType __factor = 1u;
- _UIntType __sum = 0u;
- for (size_t __j = 0; __j < __k; ++__j)
- {
- __sum += __arr[__k * __i + __j] * __factor;
- __factor *= __detail::_Shift<_UIntType, 32>::__value;
- }
- _M_x[__i] = __detail::__mod<_UIntType,
- __detail::_Shift<_UIntType, __w>::__value>(__sum);
- if (__zero)
- {
- if (__i == 0)
- {
- if ((_M_x[0] & __upper_mask) != 0u)
- __zero = false;
- }
- else if (_M_x[__i] != 0u)
- __zero = false;
- }
- }
- if (__zero)
- _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value;
- _M_p = state_size;
- }
- template<typename _UIntType, size_t __w,
- size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- void
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::
- _M_gen_rand(void)
- {
- const _UIntType __upper_mask = (~_UIntType()) << __r;
- const _UIntType __lower_mask = ~__upper_mask;
- for (size_t __k = 0; __k < (__n - __m); ++__k)
- {
- _UIntType __y = ((_M_x[__k] & __upper_mask)
- | (_M_x[__k + 1] & __lower_mask));
- _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
- ^ ((__y & 0x01) ? __a : 0));
- }
- for (size_t __k = (__n - __m); __k < (__n - 1); ++__k)
- {
- _UIntType __y = ((_M_x[__k] & __upper_mask)
- | (_M_x[__k + 1] & __lower_mask));
- _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
- ^ ((__y & 0x01) ? __a : 0));
- }
- _UIntType __y = ((_M_x[__n - 1] & __upper_mask)
- | (_M_x[0] & __lower_mask));
- _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
- ^ ((__y & 0x01) ? __a : 0));
- _M_p = 0;
- }
- template<typename _UIntType, size_t __w,
- size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- void
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::
- discard(unsigned long long __z)
- {
- while (__z > state_size - _M_p)
- {
- __z -= state_size - _M_p;
- _M_gen_rand();
- }
- _M_p += __z;
- }
- template<typename _UIntType, size_t __w,
- size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f>
- typename
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::result_type
- mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
- __s, __b, __t, __c, __l, __f>::
- operator()()
- {
- // Reload the vector - cost is O(n) amortized over n calls.
- if (_M_p >= state_size)
- _M_gen_rand();
- // Calculate o(x(i)).
- result_type __z = _M_x[_M_p++];
- __z ^= (__z >> __u) & __d;
- __z ^= (__z << __s) & __b;
- __z ^= (__z << __t) & __c;
- __z ^= (__z >> __l);
- return __z;
- }
- template<typename _UIntType, size_t __w,
- size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const mersenne_twister_engine<_UIntType, __w, __n, __m,
- __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
- __os.fill(__space);
- for (size_t __i = 0; __i < __n; ++__i)
- __os << __x._M_x[__i] << __space;
- __os << __x._M_p;
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
- template<typename _UIntType, size_t __w,
- size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t, _UIntType __c, size_t __l,
- _UIntType __f, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- mersenne_twister_engine<_UIntType, __w, __n, __m,
- __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
- {
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- for (size_t __i = 0; __i < __n; ++__i)
- __is >> __x._M_x[__i];
- __is >> __x._M_p;
- __is.flags(__flags);
- return __is;
- }
- #if ! __cpp_inline_variables
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- constexpr size_t
- subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size;
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- constexpr size_t
- subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag;
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- constexpr size_t
- subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag;
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- constexpr _UIntType
- subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed;
- #endif
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- void
- subtract_with_carry_engine<_UIntType, __w, __s, __r>::
- seed(result_type __value)
- {
- std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u>
- __lcg(__value == 0u ? default_seed : __value);
- const size_t __n = (__w + 31) / 32;
- for (size_t __i = 0; __i < long_lag; ++__i)
- {
- _UIntType __sum = 0u;
- _UIntType __factor = 1u;
- for (size_t __j = 0; __j < __n; ++__j)
- {
- __sum += __detail::__mod<uint_least32_t,
- __detail::_Shift<uint_least32_t, 32>::__value>
- (__lcg()) * __factor;
- __factor *= __detail::_Shift<_UIntType, 32>::__value;
- }
- _M_x[__i] = __detail::__mod<_UIntType,
- __detail::_Shift<_UIntType, __w>::__value>(__sum);
- }
- _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
- _M_p = 0;
- }
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- template<typename _Sseq>
- auto
- subtract_with_carry_engine<_UIntType, __w, __s, __r>::
- seed(_Sseq& __q)
- -> _If_seed_seq<_Sseq>
- {
- const size_t __k = (__w + 31) / 32;
- uint_least32_t __arr[__r * __k];
- __q.generate(__arr + 0, __arr + __r * __k);
- for (size_t __i = 0; __i < long_lag; ++__i)
- {
- _UIntType __sum = 0u;
- _UIntType __factor = 1u;
- for (size_t __j = 0; __j < __k; ++__j)
- {
- __sum += __arr[__k * __i + __j] * __factor;
- __factor *= __detail::_Shift<_UIntType, 32>::__value;
- }
- _M_x[__i] = __detail::__mod<_UIntType,
- __detail::_Shift<_UIntType, __w>::__value>(__sum);
- }
- _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
- _M_p = 0;
- }
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- typename subtract_with_carry_engine<_UIntType, __w, __s, __r>::
- result_type
- subtract_with_carry_engine<_UIntType, __w, __s, __r>::
- operator()()
- {
- // Derive short lag index from current index.
- long __ps = _M_p - short_lag;
- if (__ps < 0)
- __ps += long_lag;
- // Calculate new x(i) without overflow or division.
- // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry
- // cannot overflow.
- _UIntType __xi;
- if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
- {
- __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
- _M_carry = 0;
- }
- else
- {
- __xi = (__detail::_Shift<_UIntType, __w>::__value
- - _M_x[_M_p] - _M_carry + _M_x[__ps]);
- _M_carry = 1;
- }
- _M_x[_M_p] = __xi;
- // Adjust current index to loop around in ring buffer.
- if (++_M_p >= long_lag)
- _M_p = 0;
- return __xi;
- }
- template<typename _UIntType, size_t __w, size_t __s, size_t __r,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const subtract_with_carry_engine<_UIntType,
- __w, __s, __r>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
- __os.fill(__space);
- for (size_t __i = 0; __i < __r; ++__i)
- __os << __x._M_x[__i] << __space;
- __os << __x._M_carry << __space << __x._M_p;
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
- template<typename _UIntType, size_t __w, size_t __s, size_t __r,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x)
- {
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- for (size_t __i = 0; __i < __r; ++__i)
- __is >> __x._M_x[__i];
- __is >> __x._M_carry;
- __is >> __x._M_p;
- __is.flags(__flags);
- return __is;
- }
- #if ! __cpp_inline_variables
- template<typename _RandomNumberEngine, size_t __p, size_t __r>
- constexpr size_t
- discard_block_engine<_RandomNumberEngine, __p, __r>::block_size;
- template<typename _RandomNumberEngine, size_t __p, size_t __r>
- constexpr size_t
- discard_block_engine<_RandomNumberEngine, __p, __r>::used_block;
- #endif
- template<typename _RandomNumberEngine, size_t __p, size_t __r>
- typename discard_block_engine<_RandomNumberEngine,
- __p, __r>::result_type
- discard_block_engine<_RandomNumberEngine, __p, __r>::
- operator()()
- {
- if (_M_n >= used_block)
- {
- _M_b.discard(block_size - _M_n);
- _M_n = 0;
- }
- ++_M_n;
- return _M_b();
- }
- template<typename _RandomNumberEngine, size_t __p, size_t __r,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const discard_block_engine<_RandomNumberEngine,
- __p, __r>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
- __os.fill(__space);
- __os << __x.base() << __space << __x._M_n;
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
- template<typename _RandomNumberEngine, size_t __p, size_t __r,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- discard_block_engine<_RandomNumberEngine, __p, __r>& __x)
- {
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- __is >> __x._M_b >> __x._M_n;
- __is.flags(__flags);
- return __is;
- }
- template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
- typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
- result_type
- independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
- operator()()
- {
- typedef typename _RandomNumberEngine::result_type _Eresult_type;
- const _Eresult_type __r
- = (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max()
- ? _M_b.max() - _M_b.min() + 1 : 0);
- const unsigned __edig = std::numeric_limits<_Eresult_type>::digits;
- const unsigned __m = __r ? std::__lg(__r) : __edig;
- typedef typename std::common_type<_Eresult_type, result_type>::type
- __ctype;
- const unsigned __cdig = std::numeric_limits<__ctype>::digits;
- unsigned __n, __n0;
- __ctype __s0, __s1, __y0, __y1;
- for (size_t __i = 0; __i < 2; ++__i)
- {
- __n = (__w + __m - 1) / __m + __i;
- __n0 = __n - __w % __n;
- const unsigned __w0 = __w / __n; // __w0 <= __m
- __s0 = 0;
- __s1 = 0;
- if (__w0 < __cdig)
- {
- __s0 = __ctype(1) << __w0;
- __s1 = __s0 << 1;
- }
- __y0 = 0;
- __y1 = 0;
- if (__r)
- {
- __y0 = __s0 * (__r / __s0);
- if (__s1)
- __y1 = __s1 * (__r / __s1);
- if (__r - __y0 <= __y0 / __n)
- break;
- }
- else
- break;
- }
- result_type __sum = 0;
- for (size_t __k = 0; __k < __n0; ++__k)
- {
- __ctype __u;
- do
- __u = _M_b() - _M_b.min();
- while (__y0 && __u >= __y0);
- __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u);
- }
- for (size_t __k = __n0; __k < __n; ++__k)
- {
- __ctype __u;
- do
- __u = _M_b() - _M_b.min();
- while (__y1 && __u >= __y1);
- __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u);
- }
- return __sum;
- }
- #if ! __cpp_inline_variables
- template<typename _RandomNumberEngine, size_t __k>
- constexpr size_t
- shuffle_order_engine<_RandomNumberEngine, __k>::table_size;
- #endif
- namespace __detail
- {
- // Determine whether an integer is representable as double.
- template<typename _Tp>
- constexpr bool
- __representable_as_double(_Tp __x) noexcept
- {
- static_assert(numeric_limits<_Tp>::is_integer, "");
- static_assert(!numeric_limits<_Tp>::is_signed, "");
- // All integers <= 2^53 are representable.
- return (__x <= (1ull << __DBL_MANT_DIG__))
- // Between 2^53 and 2^54 only even numbers are representable.
- || (!(__x & 1) && __detail::__representable_as_double(__x >> 1));
- }
- // Determine whether x+1 is representable as double.
- template<typename _Tp>
- constexpr bool
- __p1_representable_as_double(_Tp __x) noexcept
- {
- static_assert(numeric_limits<_Tp>::is_integer, "");
- static_assert(!numeric_limits<_Tp>::is_signed, "");
- return numeric_limits<_Tp>::digits < __DBL_MANT_DIG__
- || (bool(__x + 1u) // return false if x+1 wraps around to zero
- && __detail::__representable_as_double(__x + 1u));
- }
- }
- template<typename _RandomNumberEngine, size_t __k>
- typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type
- shuffle_order_engine<_RandomNumberEngine, __k>::
- operator()()
- {
- constexpr result_type __range = max() - min();
- size_t __j = __k;
- const result_type __y = _M_y - min();
- // Avoid using slower long double arithmetic if possible.
- if _GLIBCXX17_CONSTEXPR (__detail::__p1_representable_as_double(__range))
- __j *= __y / (__range + 1.0);
- else
- __j *= __y / (__range + 1.0L);
- _M_y = _M_v[__j];
- _M_v[__j] = _M_b();
- return _M_y;
- }
- template<typename _RandomNumberEngine, size_t __k,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const shuffle_order_engine<_RandomNumberEngine, __k>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
- __os.fill(__space);
- __os << __x.base();
- for (size_t __i = 0; __i < __k; ++__i)
- __os << __space << __x._M_v[__i];
- __os << __space << __x._M_y;
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
- template<typename _RandomNumberEngine, size_t __k,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- shuffle_order_engine<_RandomNumberEngine, __k>& __x)
- {
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- __is >> __x._M_b;
- for (size_t __i = 0; __i < __k; ++__i)
- __is >> __x._M_v[__i];
- __is >> __x._M_y;
- __is.flags(__flags);
- return __is;
- }
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const uniform_int_distribution<_IntType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os << __x.a() << __space << __x.b();
- __os.flags(__flags);
- __os.fill(__fill);
- return __os;
- }
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- uniform_int_distribution<_IntType>& __x)
- {
- using param_type
- = typename uniform_int_distribution<_IntType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _IntType __a, __b;
- if (__is >> __a >> __b)
- __x.param(param_type(__a, __b));
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- uniform_real_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- auto __range = __p.b() - __p.a();
- while (__f != __t)
- *__f++ = __aurng() * __range + __p.a();
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const uniform_real_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.a() << __space << __x.b();
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- uniform_real_distribution<_RealType>& __x)
- {
- using param_type
- = typename uniform_real_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::skipws);
- _RealType __a, __b;
- if (__is >> __a >> __b)
- __x.param(param_type(__a, __b));
- __is.flags(__flags);
- return __is;
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- std::bernoulli_distribution::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- auto __limit = __p.p() * (__aurng.max() - __aurng.min());
- while (__f != __t)
- *__f++ = (__aurng() - __aurng.min()) < __limit;
- }
- template<typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const bernoulli_distribution& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__os.widen(' '));
- __os.precision(std::numeric_limits<double>::max_digits10);
- __os << __x.p();
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _IntType>
- template<typename _UniformRandomNumberGenerator>
- typename geometric_distribution<_IntType>::result_type
- geometric_distribution<_IntType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- // About the epsilon thing see this thread:
- // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
- const double __naf =
- (1 - std::numeric_limits<double>::epsilon()) / 2;
- // The largest _RealType convertible to _IntType.
- const double __thr =
- std::numeric_limits<_IntType>::max() + __naf;
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- double __cand;
- do
- __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p);
- while (__cand >= __thr);
- return result_type(__cand + __naf);
- }
- template<typename _IntType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- geometric_distribution<_IntType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- // About the epsilon thing see this thread:
- // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
- const double __naf =
- (1 - std::numeric_limits<double>::epsilon()) / 2;
- // The largest _RealType convertible to _IntType.
- const double __thr =
- std::numeric_limits<_IntType>::max() + __naf;
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- while (__f != __t)
- {
- double __cand;
- do
- __cand = std::floor(std::log(1.0 - __aurng())
- / __param._M_log_1_p);
- while (__cand >= __thr);
- *__f++ = __cand + __naf;
- }
- }
- template<typename _IntType,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const geometric_distribution<_IntType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__os.widen(' '));
- __os.precision(std::numeric_limits<double>::max_digits10);
- __os << __x.p();
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _IntType,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- geometric_distribution<_IntType>& __x)
- {
- using param_type = typename geometric_distribution<_IntType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::skipws);
- double __p;
- if (__is >> __p)
- __x.param(param_type(__p));
- __is.flags(__flags);
- return __is;
- }
- // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5.
- template<typename _IntType>
- template<typename _UniformRandomNumberGenerator>
- typename negative_binomial_distribution<_IntType>::result_type
- negative_binomial_distribution<_IntType>::
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- const double __y = _M_gd(__urng);
- // XXX Is the constructor too slow?
- std::poisson_distribution<result_type> __poisson(__y);
- return __poisson(__urng);
- }
- template<typename _IntType>
- template<typename _UniformRandomNumberGenerator>
- typename negative_binomial_distribution<_IntType>::result_type
- negative_binomial_distribution<_IntType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typedef typename std::gamma_distribution<double>::param_type
- param_type;
-
- const double __y =
- _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p()));
- std::poisson_distribution<result_type> __poisson(__y);
- return __poisson(__urng);
- }
- template<typename _IntType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- negative_binomial_distribution<_IntType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- while (__f != __t)
- {
- const double __y = _M_gd(__urng);
- // XXX Is the constructor too slow?
- std::poisson_distribution<result_type> __poisson(__y);
- *__f++ = __poisson(__urng);
- }
- }
- template<typename _IntType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- negative_binomial_distribution<_IntType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- typename std::gamma_distribution<result_type>::param_type
- __p2(__p.k(), (1.0 - __p.p()) / __p.p());
- while (__f != __t)
- {
- const double __y = _M_gd(__urng, __p2);
- std::poisson_distribution<result_type> __poisson(__y);
- *__f++ = __poisson(__urng);
- }
- }
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const negative_binomial_distribution<_IntType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__os.widen(' '));
- __os.precision(std::numeric_limits<double>::max_digits10);
- __os << __x.k() << __space << __x.p()
- << __space << __x._M_gd;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- negative_binomial_distribution<_IntType>& __x)
- {
- using param_type
- = typename negative_binomial_distribution<_IntType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::skipws);
- _IntType __k;
- double __p;
- if (__is >> __k >> __p >> __x._M_gd)
- __x.param(param_type(__k, __p));
- __is.flags(__flags);
- return __is;
- }
- template<typename _IntType>
- void
- poisson_distribution<_IntType>::param_type::
- _M_initialize()
- {
- #if _GLIBCXX_USE_C99_MATH_TR1
- if (_M_mean >= 12)
- {
- const double __m = std::floor(_M_mean);
- _M_lm_thr = std::log(_M_mean);
- _M_lfm = std::lgamma(__m + 1);
- _M_sm = std::sqrt(__m);
- const double __pi_4 = 0.7853981633974483096156608458198757L;
- const double __dx = std::sqrt(2 * __m * std::log(32 * __m
- / __pi_4));
- _M_d = std::round(std::max<double>(6.0, std::min(__m, __dx)));
- const double __cx = 2 * __m + _M_d;
- _M_scx = std::sqrt(__cx / 2);
- _M_1cx = 1 / __cx;
- _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
- _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2))
- / _M_d;
- }
- else
- #endif
- _M_lm_thr = std::exp(-_M_mean);
- }
- /**
- * A rejection algorithm when mean >= 12 and a simple method based
- * upon the multiplication of uniform random variates otherwise.
- * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
- * is defined.
- *
- * Reference:
- * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
- * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
- */
- template<typename _IntType>
- template<typename _UniformRandomNumberGenerator>
- typename poisson_distribution<_IntType>::result_type
- poisson_distribution<_IntType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- #if _GLIBCXX_USE_C99_MATH_TR1
- if (__param.mean() >= 12)
- {
- double __x;
- // See comments above...
- const double __naf =
- (1 - std::numeric_limits<double>::epsilon()) / 2;
- const double __thr =
- std::numeric_limits<_IntType>::max() + __naf;
- const double __m = std::floor(__param.mean());
- // sqrt(pi / 2)
- const double __spi_2 = 1.2533141373155002512078826424055226L;
- const double __c1 = __param._M_sm * __spi_2;
- const double __c2 = __param._M_c2b + __c1;
- const double __c3 = __c2 + 1;
- const double __c4 = __c3 + 1;
- // 1 / 78
- const double __178 = 0.0128205128205128205128205128205128L;
- // e^(1 / 78)
- const double __e178 = 1.0129030479320018583185514777512983L;
- const double __c5 = __c4 + __e178;
- const double __c = __param._M_cb + __c5;
- const double __2cx = 2 * (2 * __m + __param._M_d);
- bool __reject = true;
- do
- {
- const double __u = __c * __aurng();
- const double __e = -std::log(1.0 - __aurng());
- double __w = 0.0;
- if (__u <= __c1)
- {
- const double __n = _M_nd(__urng);
- const double __y = -std::abs(__n) * __param._M_sm - 1;
- __x = std::floor(__y);
- __w = -__n * __n / 2;
- if (__x < -__m)
- continue;
- }
- else if (__u <= __c2)
- {
- const double __n = _M_nd(__urng);
- const double __y = 1 + std::abs(__n) * __param._M_scx;
- __x = std::ceil(__y);
- __w = __y * (2 - __y) * __param._M_1cx;
- if (__x > __param._M_d)
- continue;
- }
- else if (__u <= __c3)
- // NB: This case not in the book, nor in the Errata,
- // but should be ok...
- __x = -1;
- else if (__u <= __c4)
- __x = 0;
- else if (__u <= __c5)
- {
- __x = 1;
- // Only in the Errata, see libstdc++/83237.
- __w = __178;
- }
- else
- {
- const double __v = -std::log(1.0 - __aurng());
- const double __y = __param._M_d
- + __v * __2cx / __param._M_d;
- __x = std::ceil(__y);
- __w = -__param._M_d * __param._M_1cx * (1 + __y / 2);
- }
- __reject = (__w - __e - __x * __param._M_lm_thr
- > __param._M_lfm - std::lgamma(__x + __m + 1));
- __reject |= __x + __m >= __thr;
- } while (__reject);
- return result_type(__x + __m + __naf);
- }
- else
- #endif
- {
- _IntType __x = 0;
- double __prod = 1.0;
- do
- {
- __prod *= __aurng();
- __x += 1;
- }
- while (__prod > __param._M_lm_thr);
- return __x - 1;
- }
- }
- template<typename _IntType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- poisson_distribution<_IntType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- // We could duplicate everything from operator()...
- while (__f != __t)
- *__f++ = this->operator()(__urng, __param);
- }
- template<typename _IntType,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const poisson_distribution<_IntType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<double>::max_digits10);
- __os << __x.mean() << __space << __x._M_nd;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _IntType,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- poisson_distribution<_IntType>& __x)
- {
- using param_type = typename poisson_distribution<_IntType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::skipws);
- double __mean;
- if (__is >> __mean >> __x._M_nd)
- __x.param(param_type(__mean));
- __is.flags(__flags);
- return __is;
- }
- template<typename _IntType>
- void
- binomial_distribution<_IntType>::param_type::
- _M_initialize()
- {
- const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
- _M_easy = true;
- #if _GLIBCXX_USE_C99_MATH_TR1
- if (_M_t * __p12 >= 8)
- {
- _M_easy = false;
- const double __np = std::floor(_M_t * __p12);
- const double __pa = __np / _M_t;
- const double __1p = 1 - __pa;
- const double __pi_4 = 0.7853981633974483096156608458198757L;
- const double __d1x =
- std::sqrt(__np * __1p * std::log(32 * __np
- / (81 * __pi_4 * __1p)));
- _M_d1 = std::round(std::max<double>(1.0, __d1x));
- const double __d2x =
- std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
- / (__pi_4 * __pa)));
- _M_d2 = std::round(std::max<double>(1.0, __d2x));
- // sqrt(pi / 2)
- const double __spi_2 = 1.2533141373155002512078826424055226L;
- _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
- _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
- _M_c = 2 * _M_d1 / __np;
- _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
- const double __a12 = _M_a1 + _M_s2 * __spi_2;
- const double __s1s = _M_s1 * _M_s1;
- _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
- * 2 * __s1s / _M_d1
- * std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
- const double __s2s = _M_s2 * _M_s2;
- _M_s = (_M_a123 + 2 * __s2s / _M_d2
- * std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
- _M_lf = (std::lgamma(__np + 1)
- + std::lgamma(_M_t - __np + 1));
- _M_lp1p = std::log(__pa / __1p);
- _M_q = -std::log(1 - (__p12 - __pa) / __1p);
- }
- else
- #endif
- _M_q = -std::log(1 - __p12);
- }
- template<typename _IntType>
- template<typename _UniformRandomNumberGenerator>
- typename binomial_distribution<_IntType>::result_type
- binomial_distribution<_IntType>::
- _M_waiting(_UniformRandomNumberGenerator& __urng,
- _IntType __t, double __q)
- {
- _IntType __x = 0;
- double __sum = 0.0;
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- do
- {
- if (__t == __x)
- return __x;
- const double __e = -std::log(1.0 - __aurng());
- __sum += __e / (__t - __x);
- __x += 1;
- }
- while (__sum <= __q);
- return __x - 1;
- }
- /**
- * A rejection algorithm when t * p >= 8 and a simple waiting time
- * method - the second in the referenced book - otherwise.
- * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
- * is defined.
- *
- * Reference:
- * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
- * New York, 1986, Ch. X, Sect. 4 (+ Errata!).
- */
- template<typename _IntType>
- template<typename _UniformRandomNumberGenerator>
- typename binomial_distribution<_IntType>::result_type
- binomial_distribution<_IntType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- result_type __ret;
- const _IntType __t = __param.t();
- const double __p = __param.p();
- const double __p12 = __p <= 0.5 ? __p : 1.0 - __p;
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- #if _GLIBCXX_USE_C99_MATH_TR1
- if (!__param._M_easy)
- {
- double __x;
- // See comments above...
- const double __naf =
- (1 - std::numeric_limits<double>::epsilon()) / 2;
- const double __thr =
- std::numeric_limits<_IntType>::max() + __naf;
- const double __np = std::floor(__t * __p12);
- // sqrt(pi / 2)
- const double __spi_2 = 1.2533141373155002512078826424055226L;
- const double __a1 = __param._M_a1;
- const double __a12 = __a1 + __param._M_s2 * __spi_2;
- const double __a123 = __param._M_a123;
- const double __s1s = __param._M_s1 * __param._M_s1;
- const double __s2s = __param._M_s2 * __param._M_s2;
- bool __reject;
- do
- {
- const double __u = __param._M_s * __aurng();
- double __v;
- if (__u <= __a1)
- {
- const double __n = _M_nd(__urng);
- const double __y = __param._M_s1 * std::abs(__n);
- __reject = __y >= __param._M_d1;
- if (!__reject)
- {
- const double __e = -std::log(1.0 - __aurng());
- __x = std::floor(__y);
- __v = -__e - __n * __n / 2 + __param._M_c;
- }
- }
- else if (__u <= __a12)
- {
- const double __n = _M_nd(__urng);
- const double __y = __param._M_s2 * std::abs(__n);
- __reject = __y >= __param._M_d2;
- if (!__reject)
- {
- const double __e = -std::log(1.0 - __aurng());
- __x = std::floor(-__y);
- __v = -__e - __n * __n / 2;
- }
- }
- else if (__u <= __a123)
- {
- const double __e1 = -std::log(1.0 - __aurng());
- const double __e2 = -std::log(1.0 - __aurng());
- const double __y = __param._M_d1
- + 2 * __s1s * __e1 / __param._M_d1;
- __x = std::floor(__y);
- __v = (-__e2 + __param._M_d1 * (1 / (__t - __np)
- -__y / (2 * __s1s)));
- __reject = false;
- }
- else
- {
- const double __e1 = -std::log(1.0 - __aurng());
- const double __e2 = -std::log(1.0 - __aurng());
- const double __y = __param._M_d2
- + 2 * __s2s * __e1 / __param._M_d2;
- __x = std::floor(-__y);
- __v = -__e2 - __param._M_d2 * __y / (2 * __s2s);
- __reject = false;
- }
- __reject = __reject || __x < -__np || __x > __t - __np;
- if (!__reject)
- {
- const double __lfx =
- std::lgamma(__np + __x + 1)
- + std::lgamma(__t - (__np + __x) + 1);
- __reject = __v > __param._M_lf - __lfx
- + __x * __param._M_lp1p;
- }
- __reject |= __x + __np >= __thr;
- }
- while (__reject);
- __x += __np + __naf;
- const _IntType __z = _M_waiting(__urng, __t - _IntType(__x),
- __param._M_q);
- __ret = _IntType(__x) + __z;
- }
- else
- #endif
- __ret = _M_waiting(__urng, __t, __param._M_q);
- if (__p12 != __p)
- __ret = __t - __ret;
- return __ret;
- }
- template<typename _IntType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- binomial_distribution<_IntType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- // We could duplicate everything from operator()...
- while (__f != __t)
- *__f++ = this->operator()(__urng, __param);
- }
- template<typename _IntType,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const binomial_distribution<_IntType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<double>::max_digits10);
- __os << __x.t() << __space << __x.p()
- << __space << __x._M_nd;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _IntType,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- binomial_distribution<_IntType>& __x)
- {
- using param_type = typename binomial_distribution<_IntType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _IntType __t;
- double __p;
- if (__is >> __t >> __p >> __x._M_nd)
- __x.param(param_type(__t, __p));
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- std::exponential_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- while (__f != __t)
- *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda();
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const exponential_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__os.widen(' '));
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.lambda();
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- exponential_distribution<_RealType>& __x)
- {
- using param_type
- = typename exponential_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _RealType __lambda;
- if (__is >> __lambda)
- __x.param(param_type(__lambda));
- __is.flags(__flags);
- return __is;
- }
- /**
- * Polar method due to Marsaglia.
- *
- * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
- * New York, 1986, Ch. V, Sect. 4.4.
- */
- template<typename _RealType>
- template<typename _UniformRandomNumberGenerator>
- typename normal_distribution<_RealType>::result_type
- normal_distribution<_RealType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- result_type __ret;
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- if (_M_saved_available)
- {
- _M_saved_available = false;
- __ret = _M_saved;
- }
- else
- {
- result_type __x, __y, __r2;
- do
- {
- __x = result_type(2.0) * __aurng() - 1.0;
- __y = result_type(2.0) * __aurng() - 1.0;
- __r2 = __x * __x + __y * __y;
- }
- while (__r2 > 1.0 || __r2 == 0.0);
- const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
- _M_saved = __x * __mult;
- _M_saved_available = true;
- __ret = __y * __mult;
- }
- __ret = __ret * __param.stddev() + __param.mean();
- return __ret;
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- normal_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- if (__f == __t)
- return;
- if (_M_saved_available)
- {
- _M_saved_available = false;
- *__f++ = _M_saved * __param.stddev() + __param.mean();
- if (__f == __t)
- return;
- }
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- while (__f + 1 < __t)
- {
- result_type __x, __y, __r2;
- do
- {
- __x = result_type(2.0) * __aurng() - 1.0;
- __y = result_type(2.0) * __aurng() - 1.0;
- __r2 = __x * __x + __y * __y;
- }
- while (__r2 > 1.0 || __r2 == 0.0);
- const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
- *__f++ = __y * __mult * __param.stddev() + __param.mean();
- *__f++ = __x * __mult * __param.stddev() + __param.mean();
- }
- if (__f != __t)
- {
- result_type __x, __y, __r2;
- do
- {
- __x = result_type(2.0) * __aurng() - 1.0;
- __y = result_type(2.0) * __aurng() - 1.0;
- __r2 = __x * __x + __y * __y;
- }
- while (__r2 > 1.0 || __r2 == 0.0);
- const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
- _M_saved = __x * __mult;
- _M_saved_available = true;
- *__f = __y * __mult * __param.stddev() + __param.mean();
- }
- }
- template<typename _RealType>
- bool
- operator==(const std::normal_distribution<_RealType>& __d1,
- const std::normal_distribution<_RealType>& __d2)
- {
- if (__d1._M_param == __d2._M_param
- && __d1._M_saved_available == __d2._M_saved_available)
- {
- if (__d1._M_saved_available
- && __d1._M_saved == __d2._M_saved)
- return true;
- else if(!__d1._M_saved_available)
- return true;
- else
- return false;
- }
- else
- return false;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const normal_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.mean() << __space << __x.stddev()
- << __space << __x._M_saved_available;
- if (__x._M_saved_available)
- __os << __space << __x._M_saved;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- normal_distribution<_RealType>& __x)
- {
- using param_type = typename normal_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- double __mean, __stddev;
- bool __saved_avail;
- if (__is >> __mean >> __stddev >> __saved_avail)
- {
- if (!__saved_avail || (__is >> __x._M_saved))
- {
- __x._M_saved_available = __saved_avail;
- __x.param(param_type(__mean, __stddev));
- }
- }
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- lognormal_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- while (__f != __t)
- *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m());
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const lognormal_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.m() << __space << __x.s()
- << __space << __x._M_nd;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- lognormal_distribution<_RealType>& __x)
- {
- using param_type
- = typename lognormal_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _RealType __m, __s;
- if (__is >> __m >> __s >> __x._M_nd)
- __x.param(param_type(__m, __s));
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- std::chi_squared_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- while (__f != __t)
- *__f++ = 2 * _M_gd(__urng);
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- std::chi_squared_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const typename
- std::gamma_distribution<result_type>::param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- while (__f != __t)
- *__f++ = 2 * _M_gd(__urng, __p);
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const chi_squared_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.n() << __space << __x._M_gd;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- chi_squared_distribution<_RealType>& __x)
- {
- using param_type
- = typename chi_squared_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _RealType __n;
- if (__is >> __n >> __x._M_gd)
- __x.param(param_type(__n));
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- template<typename _UniformRandomNumberGenerator>
- typename cauchy_distribution<_RealType>::result_type
- cauchy_distribution<_RealType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- _RealType __u;
- do
- __u = __aurng();
- while (__u == 0.5);
- const _RealType __pi = 3.1415926535897932384626433832795029L;
- return __p.a() + __p.b() * std::tan(__pi * __u);
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- cauchy_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- const _RealType __pi = 3.1415926535897932384626433832795029L;
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- while (__f != __t)
- {
- _RealType __u;
- do
- __u = __aurng();
- while (__u == 0.5);
- *__f++ = __p.a() + __p.b() * std::tan(__pi * __u);
- }
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const cauchy_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.a() << __space << __x.b();
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- cauchy_distribution<_RealType>& __x)
- {
- using param_type = typename cauchy_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _RealType __a, __b;
- if (__is >> __a >> __b)
- __x.param(param_type(__a, __b));
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- std::fisher_f_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- while (__f != __t)
- *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()));
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- std::fisher_f_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- typedef typename std::gamma_distribution<result_type>::param_type
- param_type;
- param_type __p1(__p.m() / 2);
- param_type __p2(__p.n() / 2);
- while (__f != __t)
- *__f++ = ((_M_gd_x(__urng, __p1) * n())
- / (_M_gd_y(__urng, __p2) * m()));
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const fisher_f_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.m() << __space << __x.n()
- << __space << __x._M_gd_x << __space << __x._M_gd_y;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- fisher_f_distribution<_RealType>& __x)
- {
- using param_type
- = typename fisher_f_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _RealType __m, __n;
- if (__is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y)
- __x.param(param_type(__m, __n));
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- std::student_t_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- while (__f != __t)
- *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng));
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- std::student_t_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- typename std::gamma_distribution<result_type>::param_type
- __p2(__p.n() / 2, 2);
- while (__f != __t)
- *__f++ = _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2));
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const student_t_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- student_t_distribution<_RealType>& __x)
- {
- using param_type
- = typename student_t_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _RealType __n;
- if (__is >> __n >> __x._M_nd >> __x._M_gd)
- __x.param(param_type(__n));
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- void
- gamma_distribution<_RealType>::param_type::
- _M_initialize()
- {
- _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha;
- const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0);
- _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1);
- }
- /**
- * Marsaglia, G. and Tsang, W. W.
- * "A Simple Method for Generating Gamma Variables"
- * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000.
- */
- template<typename _RealType>
- template<typename _UniformRandomNumberGenerator>
- typename gamma_distribution<_RealType>::result_type
- gamma_distribution<_RealType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- result_type __u, __v, __n;
- const result_type __a1 = (__param._M_malpha
- - _RealType(1.0) / _RealType(3.0));
- do
- {
- do
- {
- __n = _M_nd(__urng);
- __v = result_type(1.0) + __param._M_a2 * __n;
- }
- while (__v <= 0.0);
- __v = __v * __v * __v;
- __u = __aurng();
- }
- while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n
- && (std::log(__u) > (0.5 * __n * __n + __a1
- * (1.0 - __v + std::log(__v)))));
- if (__param.alpha() == __param._M_malpha)
- return __a1 * __v * __param.beta();
- else
- {
- do
- __u = __aurng();
- while (__u == 0.0);
-
- return (std::pow(__u, result_type(1.0) / __param.alpha())
- * __a1 * __v * __param.beta());
- }
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- gamma_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- result_type __u, __v, __n;
- const result_type __a1 = (__param._M_malpha
- - _RealType(1.0) / _RealType(3.0));
- if (__param.alpha() == __param._M_malpha)
- while (__f != __t)
- {
- do
- {
- do
- {
- __n = _M_nd(__urng);
- __v = result_type(1.0) + __param._M_a2 * __n;
- }
- while (__v <= 0.0);
- __v = __v * __v * __v;
- __u = __aurng();
- }
- while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n
- && (std::log(__u) > (0.5 * __n * __n + __a1
- * (1.0 - __v + std::log(__v)))));
- *__f++ = __a1 * __v * __param.beta();
- }
- else
- while (__f != __t)
- {
- do
- {
- do
- {
- __n = _M_nd(__urng);
- __v = result_type(1.0) + __param._M_a2 * __n;
- }
- while (__v <= 0.0);
- __v = __v * __v * __v;
- __u = __aurng();
- }
- while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n
- && (std::log(__u) > (0.5 * __n * __n + __a1
- * (1.0 - __v + std::log(__v)))));
- do
- __u = __aurng();
- while (__u == 0.0);
- *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha())
- * __a1 * __v * __param.beta());
- }
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const gamma_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.alpha() << __space << __x.beta()
- << __space << __x._M_nd;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- gamma_distribution<_RealType>& __x)
- {
- using param_type = typename gamma_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _RealType __alpha_val, __beta_val;
- if (__is >> __alpha_val >> __beta_val >> __x._M_nd)
- __x.param(param_type(__alpha_val, __beta_val));
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- template<typename _UniformRandomNumberGenerator>
- typename weibull_distribution<_RealType>::result_type
- weibull_distribution<_RealType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- return __p.b() * std::pow(-std::log(result_type(1) - __aurng()),
- result_type(1) / __p.a());
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- weibull_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- auto __inv_a = result_type(1) / __p.a();
- while (__f != __t)
- *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()),
- __inv_a);
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const weibull_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.a() << __space << __x.b();
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- weibull_distribution<_RealType>& __x)
- {
- using param_type = typename weibull_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _RealType __a, __b;
- if (__is >> __a >> __b)
- __x.param(param_type(__a, __b));
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- template<typename _UniformRandomNumberGenerator>
- typename extreme_value_distribution<_RealType>::result_type
- extreme_value_distribution<_RealType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- return __p.a() - __p.b() * std::log(-std::log(result_type(1)
- - __aurng()));
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- extreme_value_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- while (__f != __t)
- *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1)
- - __aurng()));
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const extreme_value_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- __os << __x.a() << __space << __x.b();
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- extreme_value_distribution<_RealType>& __x)
- {
- using param_type
- = typename extreme_value_distribution<_RealType>::param_type;
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- _RealType __a, __b;
- if (__is >> __a >> __b)
- __x.param(param_type(__a, __b));
- __is.flags(__flags);
- return __is;
- }
- template<typename _IntType>
- void
- discrete_distribution<_IntType>::param_type::
- _M_initialize()
- {
- if (_M_prob.size() < 2)
- {
- _M_prob.clear();
- return;
- }
- const double __sum = std::accumulate(_M_prob.begin(),
- _M_prob.end(), 0.0);
- __glibcxx_assert(__sum > 0);
- // Now normalize the probabilites.
- __detail::__normalize(_M_prob.begin(), _M_prob.end(), _M_prob.begin(),
- __sum);
- // Accumulate partial sums.
- _M_cp.reserve(_M_prob.size());
- std::partial_sum(_M_prob.begin(), _M_prob.end(),
- std::back_inserter(_M_cp));
- // Make sure the last cumulative probability is one.
- _M_cp[_M_cp.size() - 1] = 1.0;
- }
- template<typename _IntType>
- template<typename _Func>
- discrete_distribution<_IntType>::param_type::
- param_type(size_t __nw, double __xmin, double __xmax, _Func __fw)
- : _M_prob(), _M_cp()
- {
- const size_t __n = __nw == 0 ? 1 : __nw;
- const double __delta = (__xmax - __xmin) / __n;
- _M_prob.reserve(__n);
- for (size_t __k = 0; __k < __nw; ++__k)
- _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta));
- _M_initialize();
- }
- template<typename _IntType>
- template<typename _UniformRandomNumberGenerator>
- typename discrete_distribution<_IntType>::result_type
- discrete_distribution<_IntType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- if (__param._M_cp.empty())
- return result_type(0);
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- const double __p = __aurng();
- auto __pos = std::lower_bound(__param._M_cp.begin(),
- __param._M_cp.end(), __p);
- return __pos - __param._M_cp.begin();
- }
- template<typename _IntType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- discrete_distribution<_IntType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- if (__param._M_cp.empty())
- {
- while (__f != __t)
- *__f++ = result_type(0);
- return;
- }
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- while (__f != __t)
- {
- const double __p = __aurng();
- auto __pos = std::lower_bound(__param._M_cp.begin(),
- __param._M_cp.end(), __p);
- *__f++ = __pos - __param._M_cp.begin();
- }
- }
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const discrete_distribution<_IntType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<double>::max_digits10);
- std::vector<double> __prob = __x.probabilities();
- __os << __prob.size();
- for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit)
- __os << __space << *__dit;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- namespace __detail
- {
- template<typename _ValT, typename _CharT, typename _Traits>
- basic_istream<_CharT, _Traits>&
- __extract_params(basic_istream<_CharT, _Traits>& __is,
- vector<_ValT>& __vals, size_t __n)
- {
- __vals.reserve(__n);
- while (__n--)
- {
- _ValT __val;
- if (__is >> __val)
- __vals.push_back(__val);
- else
- break;
- }
- return __is;
- }
- } // namespace __detail
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- discrete_distribution<_IntType>& __x)
- {
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- size_t __n;
- if (__is >> __n)
- {
- std::vector<double> __prob_vec;
- if (__detail::__extract_params(__is, __prob_vec, __n))
- __x.param({__prob_vec.begin(), __prob_vec.end()});
- }
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- void
- piecewise_constant_distribution<_RealType>::param_type::
- _M_initialize()
- {
- if (_M_int.size() < 2
- || (_M_int.size() == 2
- && _M_int[0] == _RealType(0)
- && _M_int[1] == _RealType(1)))
- {
- _M_int.clear();
- _M_den.clear();
- return;
- }
- const double __sum = std::accumulate(_M_den.begin(),
- _M_den.end(), 0.0);
- __glibcxx_assert(__sum > 0);
- __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(),
- __sum);
- _M_cp.reserve(_M_den.size());
- std::partial_sum(_M_den.begin(), _M_den.end(),
- std::back_inserter(_M_cp));
- // Make sure the last cumulative probability is one.
- _M_cp[_M_cp.size() - 1] = 1.0;
- for (size_t __k = 0; __k < _M_den.size(); ++__k)
- _M_den[__k] /= _M_int[__k + 1] - _M_int[__k];
- }
- template<typename _RealType>
- template<typename _InputIteratorB, typename _InputIteratorW>
- piecewise_constant_distribution<_RealType>::param_type::
- param_type(_InputIteratorB __bbegin,
- _InputIteratorB __bend,
- _InputIteratorW __wbegin)
- : _M_int(), _M_den(), _M_cp()
- {
- if (__bbegin != __bend)
- {
- for (;;)
- {
- _M_int.push_back(*__bbegin);
- ++__bbegin;
- if (__bbegin == __bend)
- break;
- _M_den.push_back(*__wbegin);
- ++__wbegin;
- }
- }
- _M_initialize();
- }
- template<typename _RealType>
- template<typename _Func>
- piecewise_constant_distribution<_RealType>::param_type::
- param_type(initializer_list<_RealType> __bl, _Func __fw)
- : _M_int(), _M_den(), _M_cp()
- {
- _M_int.reserve(__bl.size());
- for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
- _M_int.push_back(*__biter);
- _M_den.reserve(_M_int.size() - 1);
- for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
- _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k])));
- _M_initialize();
- }
- template<typename _RealType>
- template<typename _Func>
- piecewise_constant_distribution<_RealType>::param_type::
- param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
- : _M_int(), _M_den(), _M_cp()
- {
- const size_t __n = __nw == 0 ? 1 : __nw;
- const _RealType __delta = (__xmax - __xmin) / __n;
- _M_int.reserve(__n + 1);
- for (size_t __k = 0; __k <= __nw; ++__k)
- _M_int.push_back(__xmin + __k * __delta);
- _M_den.reserve(__n);
- for (size_t __k = 0; __k < __nw; ++__k)
- _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta));
- _M_initialize();
- }
- template<typename _RealType>
- template<typename _UniformRandomNumberGenerator>
- typename piecewise_constant_distribution<_RealType>::result_type
- piecewise_constant_distribution<_RealType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- const double __p = __aurng();
- if (__param._M_cp.empty())
- return __p;
- auto __pos = std::lower_bound(__param._M_cp.begin(),
- __param._M_cp.end(), __p);
- const size_t __i = __pos - __param._M_cp.begin();
- const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
- return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i];
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- piecewise_constant_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- if (__param._M_cp.empty())
- {
- while (__f != __t)
- *__f++ = __aurng();
- return;
- }
- while (__f != __t)
- {
- const double __p = __aurng();
- auto __pos = std::lower_bound(__param._M_cp.begin(),
- __param._M_cp.end(), __p);
- const size_t __i = __pos - __param._M_cp.begin();
- const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
- *__f++ = (__param._M_int[__i]
- + (__p - __pref) / __param._M_den[__i]);
- }
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const piecewise_constant_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- std::vector<_RealType> __int = __x.intervals();
- __os << __int.size() - 1;
- for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
- __os << __space << *__xit;
- std::vector<double> __den = __x.densities();
- for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
- __os << __space << *__dit;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- piecewise_constant_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- size_t __n;
- if (__is >> __n)
- {
- std::vector<_RealType> __int_vec;
- if (__detail::__extract_params(__is, __int_vec, __n + 1))
- {
- std::vector<double> __den_vec;
- if (__detail::__extract_params(__is, __den_vec, __n))
- {
- __x.param({ __int_vec.begin(), __int_vec.end(),
- __den_vec.begin() });
- }
- }
- }
- __is.flags(__flags);
- return __is;
- }
- template<typename _RealType>
- void
- piecewise_linear_distribution<_RealType>::param_type::
- _M_initialize()
- {
- if (_M_int.size() < 2
- || (_M_int.size() == 2
- && _M_int[0] == _RealType(0)
- && _M_int[1] == _RealType(1)
- && _M_den[0] == _M_den[1]))
- {
- _M_int.clear();
- _M_den.clear();
- return;
- }
- double __sum = 0.0;
- _M_cp.reserve(_M_int.size() - 1);
- _M_m.reserve(_M_int.size() - 1);
- for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
- {
- const _RealType __delta = _M_int[__k + 1] - _M_int[__k];
- __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta;
- _M_cp.push_back(__sum);
- _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta);
- }
- __glibcxx_assert(__sum > 0);
- // Now normalize the densities...
- __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(),
- __sum);
- // ... and partial sums...
- __detail::__normalize(_M_cp.begin(), _M_cp.end(), _M_cp.begin(), __sum);
- // ... and slopes.
- __detail::__normalize(_M_m.begin(), _M_m.end(), _M_m.begin(), __sum);
- // Make sure the last cumulative probablility is one.
- _M_cp[_M_cp.size() - 1] = 1.0;
- }
- template<typename _RealType>
- template<typename _InputIteratorB, typename _InputIteratorW>
- piecewise_linear_distribution<_RealType>::param_type::
- param_type(_InputIteratorB __bbegin,
- _InputIteratorB __bend,
- _InputIteratorW __wbegin)
- : _M_int(), _M_den(), _M_cp(), _M_m()
- {
- for (; __bbegin != __bend; ++__bbegin, ++__wbegin)
- {
- _M_int.push_back(*__bbegin);
- _M_den.push_back(*__wbegin);
- }
- _M_initialize();
- }
- template<typename _RealType>
- template<typename _Func>
- piecewise_linear_distribution<_RealType>::param_type::
- param_type(initializer_list<_RealType> __bl, _Func __fw)
- : _M_int(), _M_den(), _M_cp(), _M_m()
- {
- _M_int.reserve(__bl.size());
- _M_den.reserve(__bl.size());
- for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
- {
- _M_int.push_back(*__biter);
- _M_den.push_back(__fw(*__biter));
- }
- _M_initialize();
- }
- template<typename _RealType>
- template<typename _Func>
- piecewise_linear_distribution<_RealType>::param_type::
- param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
- : _M_int(), _M_den(), _M_cp(), _M_m()
- {
- const size_t __n = __nw == 0 ? 1 : __nw;
- const _RealType __delta = (__xmax - __xmin) / __n;
- _M_int.reserve(__n + 1);
- _M_den.reserve(__n + 1);
- for (size_t __k = 0; __k <= __nw; ++__k)
- {
- _M_int.push_back(__xmin + __k * __delta);
- _M_den.push_back(__fw(_M_int[__k] + __delta));
- }
- _M_initialize();
- }
- template<typename _RealType>
- template<typename _UniformRandomNumberGenerator>
- typename piecewise_linear_distribution<_RealType>::result_type
- piecewise_linear_distribution<_RealType>::
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- const double __p = __aurng();
- if (__param._M_cp.empty())
- return __p;
- auto __pos = std::lower_bound(__param._M_cp.begin(),
- __param._M_cp.end(), __p);
- const size_t __i = __pos - __param._M_cp.begin();
- const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
- const double __a = 0.5 * __param._M_m[__i];
- const double __b = __param._M_den[__i];
- const double __cm = __p - __pref;
- _RealType __x = __param._M_int[__i];
- if (__a == 0)
- __x += __cm / __b;
- else
- {
- const double __d = __b * __b + 4.0 * __a * __cm;
- __x += 0.5 * (std::sqrt(__d) - __b) / __a;
- }
- return __x;
- }
- template<typename _RealType>
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- piecewise_linear_distribution<_RealType>::
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __param)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>)
- // We could duplicate everything from operator()...
- while (__f != __t)
- *__f++ = this->operator()(__urng, __param);
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const piecewise_linear_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __os.flags();
- const _CharT __fill = __os.fill();
- const std::streamsize __precision = __os.precision();
- const _CharT __space = __os.widen(' ');
- __os.flags(__ios_base::scientific | __ios_base::left);
- __os.fill(__space);
- __os.precision(std::numeric_limits<_RealType>::max_digits10);
- std::vector<_RealType> __int = __x.intervals();
- __os << __int.size() - 1;
- for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
- __os << __space << *__xit;
- std::vector<double> __den = __x.densities();
- for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
- __os << __space << *__dit;
- __os.flags(__flags);
- __os.fill(__fill);
- __os.precision(__precision);
- return __os;
- }
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- piecewise_linear_distribution<_RealType>& __x)
- {
- using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base;
- const typename __ios_base::fmtflags __flags = __is.flags();
- __is.flags(__ios_base::dec | __ios_base::skipws);
- size_t __n;
- if (__is >> __n)
- {
- vector<_RealType> __int_vec;
- if (__detail::__extract_params(__is, __int_vec, __n + 1))
- {
- vector<double> __den_vec;
- if (__detail::__extract_params(__is, __den_vec, __n + 1))
- {
- __x.param({ __int_vec.begin(), __int_vec.end(),
- __den_vec.begin() });
- }
- }
- }
- __is.flags(__flags);
- return __is;
- }
- template<typename _IntType, typename>
- seed_seq::seed_seq(std::initializer_list<_IntType> __il)
- {
- _M_v.reserve(__il.size());
- for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter)
- _M_v.push_back(__detail::__mod<result_type,
- __detail::_Shift<result_type, 32>::__value>(*__iter));
- }
- template<typename _InputIterator>
- seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end)
- {
- if _GLIBCXX17_CONSTEXPR (__is_random_access_iter<_InputIterator>::value)
- _M_v.reserve(std::distance(__begin, __end));
- for (_InputIterator __iter = __begin; __iter != __end; ++__iter)
- _M_v.push_back(__detail::__mod<result_type,
- __detail::_Shift<result_type, 32>::__value>(*__iter));
- }
- template<typename _RandomAccessIterator>
- void
- seed_seq::generate(_RandomAccessIterator __begin,
- _RandomAccessIterator __end)
- {
- typedef typename iterator_traits<_RandomAccessIterator>::value_type
- _Type;
- if (__begin == __end)
- return;
- std::fill(__begin, __end, _Type(0x8b8b8b8bu));
- const size_t __n = __end - __begin;
- const size_t __s = _M_v.size();
- const size_t __t = (__n >= 623) ? 11
- : (__n >= 68) ? 7
- : (__n >= 39) ? 5
- : (__n >= 7) ? 3
- : (__n - 1) / 2;
- const size_t __p = (__n - __t) / 2;
- const size_t __q = __p + __t;
- const size_t __m = std::max(size_t(__s + 1), __n);
- #ifndef __UINT32_TYPE__
- struct _Up
- {
- _Up(uint_least32_t v) : _M_v(v & 0xffffffffu) { }
- operator uint_least32_t() const { return _M_v; }
- uint_least32_t _M_v;
- };
- using uint32_t = _Up;
- #endif
- // k == 0, every element in [begin,end) equals 0x8b8b8b8bu
- {
- uint32_t __r1 = 1371501266u;
- uint32_t __r2 = __r1 + __s;
- __begin[__p] += __r1;
- __begin[__q] = (uint32_t)__begin[__q] + __r2;
- __begin[0] = __r2;
- }
- for (size_t __k = 1; __k <= __s; ++__k)
- {
- const size_t __kn = __k % __n;
- const size_t __kpn = (__k + __p) % __n;
- const size_t __kqn = (__k + __q) % __n;
- uint32_t __arg = (__begin[__kn]
- ^ __begin[__kpn]
- ^ __begin[(__k - 1) % __n]);
- uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27));
- uint32_t __r2 = __r1 + (uint32_t)__kn + _M_v[__k - 1];
- __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1;
- __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2;
- __begin[__kn] = __r2;
- }
- for (size_t __k = __s + 1; __k < __m; ++__k)
- {
- const size_t __kn = __k % __n;
- const size_t __kpn = (__k + __p) % __n;
- const size_t __kqn = (__k + __q) % __n;
- uint32_t __arg = (__begin[__kn]
- ^ __begin[__kpn]
- ^ __begin[(__k - 1) % __n]);
- uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27));
- uint32_t __r2 = __r1 + (uint32_t)__kn;
- __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1;
- __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2;
- __begin[__kn] = __r2;
- }
- for (size_t __k = __m; __k < __m + __n; ++__k)
- {
- const size_t __kn = __k % __n;
- const size_t __kpn = (__k + __p) % __n;
- const size_t __kqn = (__k + __q) % __n;
- uint32_t __arg = (__begin[__kn]
- + __begin[__kpn]
- + __begin[(__k - 1) % __n]);
- uint32_t __r3 = 1566083941u * (__arg ^ (__arg >> 27));
- uint32_t __r4 = __r3 - __kn;
- __begin[__kpn] ^= __r3;
- __begin[__kqn] ^= __r4;
- __begin[__kn] = __r4;
- }
- }
- template<typename _RealType, size_t __bits,
- typename _UniformRandomNumberGenerator>
- _RealType
- generate_canonical(_UniformRandomNumberGenerator& __urng)
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument must be a floating point type");
- const size_t __b
- = std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits),
- __bits);
- const long double __r = static_cast<long double>(__urng.max())
- - static_cast<long double>(__urng.min()) + 1.0L;
- const size_t __log2r = std::log(__r) / std::log(2.0L);
- const size_t __m = std::max<size_t>(1UL,
- (__b + __log2r - 1UL) / __log2r);
- _RealType __ret;
- _RealType __sum = _RealType(0);
- _RealType __tmp = _RealType(1);
- for (size_t __k = __m; __k != 0; --__k)
- {
- __sum += _RealType(__urng() - __urng.min()) * __tmp;
- __tmp *= __r;
- }
- __ret = __sum / __tmp;
- if (__builtin_expect(__ret >= _RealType(1), 0))
- {
- #if _GLIBCXX_USE_C99_MATH_TR1
- __ret = std::nextafter(_RealType(1), _RealType(0));
- #else
- __ret = _RealType(1)
- - std::numeric_limits<_RealType>::epsilon() / _RealType(2);
- #endif
- }
- return __ret;
- }
- _GLIBCXX_END_NAMESPACE_VERSION
- } // namespace
- #endif
|